mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Fix typo in rule-based matching docs * Improve token pattern checking without validation Add more detailed token pattern checks without full JSON pattern validation and provide more detailed error messages. Addresses #4070 (also related: #4063, #4100). * Check whether top-level attributes in patterns and attr for PhraseMatcher are in token pattern schema * Check whether attribute value types are supported in general (as opposed to per attribute with full validation) * Report various internal error types (OverflowError, AttributeError, KeyError) as ValueError with standard error messages * Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS, LEMMA, and DEP * Add error messages with relevant details on how to use validate=True or nlp() instead of nlp.make_doc() * Support attr=TEXT for PhraseMatcher * Add NORM to schema * Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler * Remove unnecessary .keys() * Rephrase error messages * Add another type check to Matcher Add another type check to Matcher for more understandable error messages in some rare cases. * Support phrase_matcher_attr=TEXT for EntityRuler * Don't use spacy.errors in examples and bin scripts * Fix error code * Auto-format Also try get Azure pipelines to finally start a build :( * Update errors.py Co-authored-by: Ines Montani <ines@ines.io> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			138 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding: utf8
 | 
						|
 | 
						|
"""Example of defining and (pre)training spaCy's knowledge base,
 | 
						|
which is needed to implement entity linking functionality.
 | 
						|
 | 
						|
For more details, see the documentation:
 | 
						|
* Knowledge base: https://spacy.io/api/kb
 | 
						|
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
 | 
						|
 | 
						|
Compatible with: spaCy vX.X
 | 
						|
Last tested with: vX.X
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
from pathlib import Path
 | 
						|
 | 
						|
from spacy.vocab import Vocab
 | 
						|
import spacy
 | 
						|
from spacy.kb import KnowledgeBase
 | 
						|
 | 
						|
from bin.wiki_entity_linking.train_descriptions import EntityEncoder
 | 
						|
 | 
						|
 | 
						|
# Q2146908 (Russ Cochran): American golfer
 | 
						|
# Q7381115 (Russ Cochran): publisher
 | 
						|
ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)}
 | 
						|
 | 
						|
INPUT_DIM = 300  # dimension of pre-trained input vectors
 | 
						|
DESC_WIDTH = 64  # dimension of output entity vectors
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    vocab_path=("Path to the vocab for the kb", "option", "v", Path),
 | 
						|
    model=("Model name, should have pretrained word embeddings", "option", "m", str),
 | 
						|
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						|
    n_iter=("Number of training iterations", "option", "n", int),
 | 
						|
)
 | 
						|
def main(vocab_path=None, model=None, output_dir=None, n_iter=50):
 | 
						|
    """Load the model, create the KB and pretrain the entity encodings.
 | 
						|
    Either an nlp model or a vocab is needed to provide access to pre-trained word embeddings.
 | 
						|
    If an output_dir is provided, the KB will be stored there in a file 'kb'.
 | 
						|
    When providing an nlp model, the updated vocab will also be written to a directory in the output_dir."""
 | 
						|
    if model is None and vocab_path is None:
 | 
						|
        raise ValueError("Either the `nlp` model or the `vocab` should be specified.")
 | 
						|
 | 
						|
    if model is not None:
 | 
						|
        nlp = spacy.load(model)  # load existing spaCy model
 | 
						|
        print("Loaded model '%s'" % model)
 | 
						|
    else:
 | 
						|
        vocab = Vocab().from_disk(vocab_path)
 | 
						|
        # create blank Language class with specified vocab
 | 
						|
        nlp = spacy.blank("en", vocab=vocab)
 | 
						|
        print("Created blank 'en' model with vocab from '%s'" % vocab_path)
 | 
						|
 | 
						|
    kb = KnowledgeBase(vocab=nlp.vocab)
 | 
						|
 | 
						|
    # set up the data
 | 
						|
    entity_ids = []
 | 
						|
    descriptions = []
 | 
						|
    freqs = []
 | 
						|
    for key, value in ENTITIES.items():
 | 
						|
        desc, freq = value
 | 
						|
        entity_ids.append(key)
 | 
						|
        descriptions.append(desc)
 | 
						|
        freqs.append(freq)
 | 
						|
 | 
						|
    # training entity description encodings
 | 
						|
    # this part can easily be replaced with a custom entity encoder
 | 
						|
    encoder = EntityEncoder(
 | 
						|
        nlp=nlp,
 | 
						|
        input_dim=INPUT_DIM,
 | 
						|
        desc_width=DESC_WIDTH,
 | 
						|
        epochs=n_iter,
 | 
						|
        threshold=0.001,
 | 
						|
    )
 | 
						|
    encoder.train(description_list=descriptions, to_print=True)
 | 
						|
 | 
						|
    # get the pretrained entity vectors
 | 
						|
    embeddings = encoder.apply_encoder(descriptions)
 | 
						|
 | 
						|
    # set the entities, can also be done by calling `kb.add_entity` for each entity
 | 
						|
    kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=embeddings)
 | 
						|
 | 
						|
    # adding aliases, the entities need to be defined in the KB beforehand
 | 
						|
    kb.add_alias(
 | 
						|
        alias="Russ Cochran",
 | 
						|
        entities=["Q2146908", "Q7381115"],
 | 
						|
        probabilities=[0.24, 0.7],  # the sum of these probabilities should not exceed 1
 | 
						|
    )
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    print()
 | 
						|
    _print_kb(kb)
 | 
						|
 | 
						|
    # save model to output directory
 | 
						|
    if output_dir is not None:
 | 
						|
        output_dir = Path(output_dir)
 | 
						|
        if not output_dir.exists():
 | 
						|
            output_dir.mkdir()
 | 
						|
        kb_path = str(output_dir / "kb")
 | 
						|
        kb.dump(kb_path)
 | 
						|
        print()
 | 
						|
        print("Saved KB to", kb_path)
 | 
						|
 | 
						|
        # only storing the vocab if we weren't already reading it from file
 | 
						|
        if not vocab_path:
 | 
						|
            vocab_path = output_dir / "vocab"
 | 
						|
            kb.vocab.to_disk(vocab_path)
 | 
						|
            print("Saved vocab to", vocab_path)
 | 
						|
 | 
						|
        print()
 | 
						|
 | 
						|
        # test the saved model
 | 
						|
        # always reload a knowledge base with the same vocab instance!
 | 
						|
        print("Loading vocab from", vocab_path)
 | 
						|
        print("Loading KB from", kb_path)
 | 
						|
        vocab2 = Vocab().from_disk(vocab_path)
 | 
						|
        kb2 = KnowledgeBase(vocab=vocab2)
 | 
						|
        kb2.load_bulk(kb_path)
 | 
						|
        _print_kb(kb2)
 | 
						|
        print()
 | 
						|
 | 
						|
 | 
						|
def _print_kb(kb):
 | 
						|
    print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings())
 | 
						|
    print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings())
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 | 
						|
 | 
						|
    # Expected output:
 | 
						|
 | 
						|
    # 2 kb entities: ['Q2146908', 'Q7381115']
 | 
						|
    # 1 kb aliases: ['Russ Cochran']
 |