mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
		
			
				
	
	
		
			174 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| 
 | |
| from spacy.kb import KnowledgeBase
 | |
| from spacy.lang.en import English
 | |
| from spacy.pipeline import EntityRuler
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return English()
 | |
| 
 | |
| 
 | |
| def assert_almost_equal(a, b):
 | |
|     delta = 0.0001
 | |
|     assert a - delta <= b <= a + delta
 | |
| 
 | |
| 
 | |
| def test_kb_valid_entities(nlp):
 | |
|     """Test the valid construction of a KB with 3 entities and two aliases"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the corresponding KB
 | |
|     assert mykb.get_size_entities() == 3
 | |
|     assert mykb.get_size_aliases() == 2
 | |
| 
 | |
|     # test retrieval of the entity vectors
 | |
|     assert mykb.get_vector("Q1") == [8, 4, 3]
 | |
|     assert mykb.get_vector("Q2") == [2, 1, 0]
 | |
|     assert mykb.get_vector("Q3") == [-1, -6, 5]
 | |
| 
 | |
|     # test retrieval of prior probabilities
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
 | |
|     assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entities(nlp):
 | |
|     """Test the invalid construction of a KB with an alias linked to a non-existing entity"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because one of the given IDs is not valid
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_probabilities(nlp):
 | |
|     """Test the invalid construction of a KB with wrong prior probabilities"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the sum of the probabilities exceeds 1
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_combination(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity and probability lists"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases - should fail because the entities and probabilities vectors are not of equal length
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_alias(
 | |
|             alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_kb_invalid_entity_vector(nlp):
 | |
|     """Test the invalid construction of a KB with non-matching entity vector lengths"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
 | |
| 
 | |
|     # this should fail because the kb's expected entity vector length is 3
 | |
|     with pytest.raises(ValueError):
 | |
|         mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
 | |
| 
 | |
| 
 | |
| def test_candidate_generation(nlp):
 | |
|     """Test correct candidate generation"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | |
|     mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
 | |
|     mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
 | |
| 
 | |
|     # test the size of the relevant candidates
 | |
|     assert len(mykb.get_candidates("douglas")) == 2
 | |
|     assert len(mykb.get_candidates("adam")) == 1
 | |
|     assert len(mykb.get_candidates("shrubbery")) == 0
 | |
| 
 | |
|     # test the content of the candidates
 | |
|     assert mykb.get_candidates("adam")[0].entity_ == "Q2"
 | |
|     assert mykb.get_candidates("adam")[0].alias_ == "adam"
 | |
|     assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
 | |
|     assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
 | |
| 
 | |
| 
 | |
| def test_preserving_links_asdoc(nlp):
 | |
|     """Test that Span.as_doc preserves the existing entity links"""
 | |
|     mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
 | |
| 
 | |
|     # adding entities
 | |
|     mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
 | |
|     mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
 | |
| 
 | |
|     # adding aliases
 | |
|     mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
 | |
|     mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | |
| 
 | |
|     # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | |
|     sentencizer = nlp.create_pipe("sentencizer")
 | |
|     nlp.add_pipe(sentencizer)
 | |
| 
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [
 | |
|         {"label": "GPE", "pattern": "Boston"},
 | |
|         {"label": "GPE", "pattern": "Denver"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     el_pipe = nlp.create_pipe(name="entity_linker")
 | |
|     el_pipe.set_kb(mykb)
 | |
|     el_pipe.begin_training()
 | |
|     el_pipe.incl_context = False
 | |
|     el_pipe.incl_prior = True
 | |
|     nlp.add_pipe(el_pipe, last=True)
 | |
| 
 | |
|     # test whether the entity links are preserved by the `as_doc()` function
 | |
|     text = "She lives in Boston. He lives in Denver."
 | |
|     doc = nlp(text)
 | |
|     for ent in doc.ents:
 | |
|         orig_text = ent.text
 | |
|         orig_kb_id = ent.kb_id_
 | |
|         sent_doc = ent.sent.as_doc()
 | |
|         for s_ent in sent_doc.ents:
 | |
|             if s_ent.text == orig_text:
 | |
|                 assert s_ent.kb_id_ == orig_kb_id
 |