spaCy/spacy/tests/vocab_vectors/test_similarity.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

112 lines
3.7 KiB
Python

import numpy
import pytest
from spacy.tokens import Doc
from spacy.vocab import Vocab
from ..util import add_vecs_to_vocab, get_cosine
@pytest.fixture
def vectors():
return [("apple", [1, 2, 3]), ("orange", [-1, -2, -3])]
@pytest.fixture()
def vocab(en_vocab, vectors):
add_vecs_to_vocab(en_vocab, vectors)
return en_vocab
@pytest.mark.issue(2219)
def test_issue2219(en_vocab):
"""Test if indexing issue still occurs during Token-Token similarity"""
vectors = [("a", [1, 2, 3]), ("letter", [4, 5, 6])]
add_vecs_to_vocab(en_vocab, vectors)
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(en_vocab, words=[word1, word2])
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
def test_vectors_similarity_LL(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
lex1 = vocab[word1]
lex2 = vocab[word2]
assert lex1.has_vector
assert lex2.has_vector
assert lex1.vector_norm != 0
assert lex2.vector_norm != 0
assert lex1.vector[0] != lex2.vector[0] and lex1.vector[1] != lex2.vector[1]
assert isinstance(lex1.similarity(lex2), float)
assert numpy.isclose(lex1.similarity(lex2), get_cosine(vec1, vec2))
assert numpy.isclose(lex2.similarity(lex2), lex1.similarity(lex1))
def test_vectors_similarity_TT(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert doc[0].has_vector
assert doc[1].has_vector
assert doc[0].vector_norm != 0
assert doc[1].vector_norm != 0
assert doc[0].vector[0] != doc[1].vector[0] and doc[0].vector[1] != doc[1].vector[1]
assert isinstance(doc[0].similarity(doc[1]), float)
assert numpy.isclose(doc[0].similarity(doc[1]), get_cosine(vec1, vec2))
assert numpy.isclose(doc[1].similarity(doc[0]), doc[0].similarity(doc[1]))
def test_vectors_similarity_SS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert isinstance(doc[0:1].similarity(doc[0:2]), float)
assert doc[0:1].similarity(doc[0:2]) == doc[0:2].similarity(doc[0:1])
def test_vectors_similarity_DD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc1 = Doc(vocab, words=[word1, word2])
doc2 = Doc(vocab, words=[word2, word1])
assert isinstance(doc1.similarity(doc2), float)
assert doc1.similarity(doc2) == doc2.similarity(doc1)
def test_vectors_similarity_TD(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert isinstance(doc.similarity(doc[0]), float)
assert isinstance(doc[0].similarity(doc), float)
assert doc.similarity(doc[0]) == doc[0].similarity(doc)
def test_vectors_similarity_TS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert isinstance(doc[:2].similarity(doc[0]), float)
assert isinstance(doc[0].similarity(doc[:2]), float)
assert doc[:2].similarity(doc[0]) == doc[0].similarity(doc[:2])
def test_vectors_similarity_DS(vocab, vectors):
[(word1, vec1), (word2, vec2)] = vectors
doc = Doc(vocab, words=[word1, word2])
assert isinstance(doc.similarity(doc[:2]), float)
assert doc.similarity(doc[:2]) == doc[:2].similarity(doc)
def test_vectors_similarity_no_vectors():
vocab = Vocab()
doc1 = Doc(vocab, words=["a", "b"])
doc2 = Doc(vocab, words=["c", "d", "e"])
with pytest.warns(UserWarning):
doc1.similarity(doc2)
with pytest.warns(UserWarning):
doc1.similarity(doc2[1])
with pytest.warns(UserWarning):
doc1.similarity(doc2[:2])
with pytest.warns(UserWarning):
doc2.similarity(doc1)
with pytest.warns(UserWarning):
doc2[1].similarity(doc1)
with pytest.warns(UserWarning):
doc2[:2].similarity(doc1)