mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-08 16:26:37 +03:00
1cdbb7c97c
Changed python set to cpp stl set #2032 ## Description Changed python set to cpp stl set. CPP stl set works better due to the logarithmic run time of its methods. Finding minimum in the cpp set is done in constant time as opposed to the worst case linear runtime of python set. Operations such as find,count,insert,delete are also done in either constant and logarithmic time thus making cpp set a better option to manage vectors. Reference : http://www.cplusplus.com/reference/set/set/ ### Types of change Enhancement for `Vectors` for faster initialising of word vectors(fasttext)
203 lines
6.3 KiB
Python
203 lines
6.3 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
from ...vectors import Vectors
|
|
from ...tokenizer import Tokenizer
|
|
from ...strings import hash_string
|
|
from ..util import add_vecs_to_vocab, get_doc
|
|
|
|
import numpy
|
|
import pytest
|
|
|
|
|
|
@pytest.fixture
|
|
def strings():
|
|
return ["apple", "orange"]
|
|
|
|
@pytest.fixture
|
|
def vectors():
|
|
return [
|
|
("apple", [1, 2, 3]),
|
|
("orange", [-1, -2, -3]),
|
|
('and', [-1, -1, -1]),
|
|
('juice', [5, 5, 10]),
|
|
('pie', [7, 6.3, 8.9])]
|
|
|
|
|
|
@pytest.fixture
|
|
def data():
|
|
return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype='f')
|
|
|
|
@pytest.fixture
|
|
def resize_data():
|
|
return numpy.asarray([[0.0, 1.0], [2.0, 3.0]], dtype='f')
|
|
|
|
@pytest.fixture()
|
|
def vocab(en_vocab, vectors):
|
|
add_vecs_to_vocab(en_vocab, vectors)
|
|
return en_vocab
|
|
|
|
def test_init_vectors_with_resize_shape(strings,resize_data):
|
|
v = Vectors(shape=(len(strings), 3))
|
|
v.resize(shape=resize_data.shape)
|
|
assert v.shape == resize_data.shape
|
|
assert v.shape != (len(strings), 3)
|
|
|
|
def test_init_vectors_with_resize_data(data,resize_data):
|
|
v = Vectors(data=data)
|
|
v.resize(shape=resize_data.shape)
|
|
assert v.shape == resize_data.shape
|
|
assert v.shape != data.shape
|
|
|
|
def test_get_vector_resize(strings, data,resize_data):
|
|
v = Vectors(data=data)
|
|
v.resize(shape=resize_data.shape)
|
|
strings = [hash_string(s) for s in strings]
|
|
for i, string in enumerate(strings):
|
|
v.add(string, row=i)
|
|
|
|
assert list(v[strings[0]]) == list(resize_data[0])
|
|
assert list(v[strings[0]]) != list(resize_data[1])
|
|
assert list(v[strings[1]]) != list(resize_data[0])
|
|
assert list(v[strings[1]]) == list(resize_data[1])
|
|
|
|
def test_init_vectors_with_data(strings, data):
|
|
v = Vectors(data=data)
|
|
assert v.shape == data.shape
|
|
|
|
def test_init_vectors_with_shape(strings):
|
|
v = Vectors(shape=(len(strings), 3))
|
|
assert v.shape == (len(strings), 3)
|
|
|
|
|
|
def test_get_vector(strings, data):
|
|
v = Vectors(data=data)
|
|
strings = [hash_string(s) for s in strings]
|
|
for i, string in enumerate(strings):
|
|
v.add(string, row=i)
|
|
assert list(v[strings[0]]) == list(data[0])
|
|
assert list(v[strings[0]]) != list(data[1])
|
|
assert list(v[strings[1]]) != list(data[0])
|
|
|
|
|
|
def test_set_vector(strings, data):
|
|
orig = data.copy()
|
|
v = Vectors(data=data)
|
|
strings = [hash_string(s) for s in strings]
|
|
for i, string in enumerate(strings):
|
|
v.add(string, row=i)
|
|
assert list(v[strings[0]]) == list(orig[0])
|
|
assert list(v[strings[0]]) != list(orig[1])
|
|
v[strings[0]] = data[1]
|
|
assert list(v[strings[0]]) == list(orig[1])
|
|
assert list(v[strings[0]]) != list(orig[0])
|
|
|
|
|
|
@pytest.fixture()
|
|
def tokenizer_v(vocab):
|
|
return Tokenizer(vocab, {}, None, None, None)
|
|
|
|
|
|
@pytest.mark.parametrize('text', ["apple and orange"])
|
|
def test_vectors_token_vector(tokenizer_v, vectors, text):
|
|
doc = tokenizer_v(text)
|
|
assert vectors[0] == (doc[0].text, list(doc[0].vector))
|
|
assert vectors[1] == (doc[2].text, list(doc[2].vector))
|
|
|
|
|
|
@pytest.mark.parametrize('text', ["apple", "orange"])
|
|
def test_vectors_lexeme_vector(vocab, text):
|
|
lex = vocab[text]
|
|
assert list(lex.vector)
|
|
assert lex.vector_norm
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
|
|
def test_vectors_doc_vector(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
assert list(doc.vector)
|
|
assert doc.vector_norm
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
|
|
def test_vectors_span_vector(vocab, text):
|
|
span = get_doc(vocab, text)[0:2]
|
|
assert list(span.vector)
|
|
assert span.vector_norm
|
|
|
|
|
|
@pytest.mark.parametrize('text', ["apple orange"])
|
|
def test_vectors_token_token_similarity(tokenizer_v, text):
|
|
doc = tokenizer_v(text)
|
|
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
|
|
assert -1. < doc[0].similarity(doc[1]) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
|
|
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
|
|
token = tokenizer_v(text1)
|
|
lex = vocab[text2]
|
|
assert token.similarity(lex) == lex.similarity(token)
|
|
assert -1. < token.similarity(lex) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
|
|
def test_vectors_token_span_similarity(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
|
|
assert -1. < doc[0].similarity(doc[1:3]) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
|
|
def test_vectors_token_doc_similarity(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
assert doc[0].similarity(doc) == doc.similarity(doc[0])
|
|
assert -1. < doc[0].similarity(doc) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
|
|
def test_vectors_lexeme_span_similarity(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
lex = vocab[text[0]]
|
|
assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
|
|
assert -1. < doc.similarity(doc[1:3]) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
|
|
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
|
|
lex1 = vocab[text1]
|
|
lex2 = vocab[text2]
|
|
assert lex1.similarity(lex2) == lex2.similarity(lex1)
|
|
assert -1. < lex1.similarity(lex2) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
|
|
def test_vectors_lexeme_doc_similarity(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
lex = vocab[text[0]]
|
|
assert lex.similarity(doc) == doc.similarity(lex)
|
|
assert -1. < lex.similarity(doc) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
|
|
def test_vectors_span_span_similarity(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
|
|
assert -1. < doc[0:2].similarity(doc[1:3]) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
|
|
def test_vectors_span_doc_similarity(vocab, text):
|
|
doc = get_doc(vocab, text)
|
|
assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
|
|
assert -1. < doc[0:2].similarity(doc) < 1.0
|
|
|
|
|
|
@pytest.mark.parametrize('text1,text2', [
|
|
(["apple", "and", "apple", "pie"], ["orange", "juice"])])
|
|
def test_vectors_doc_doc_similarity(vocab, text1, text2):
|
|
doc1 = get_doc(vocab, text1)
|
|
doc2 = get_doc(vocab, text2)
|
|
assert doc1.similarity(doc2) == doc2.similarity(doc1)
|
|
assert -1. < doc1.similarity(doc2) < 1.0
|