mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
109 lines
3.8 KiB
Python
109 lines
3.8 KiB
Python
from typing import List
|
|
|
|
import numpy
|
|
import pytest
|
|
from numpy.testing import assert_almost_equal
|
|
from thinc.api import Model, data_validation, get_current_ops
|
|
from thinc.types import Array2d, Ragged
|
|
|
|
from spacy.lang.en import English
|
|
from spacy.ml import FeatureExtractor, StaticVectors
|
|
from spacy.ml._character_embed import CharacterEmbed
|
|
from spacy.tokens import Doc
|
|
from spacy.vocab import Vocab
|
|
|
|
OPS = get_current_ops()
|
|
|
|
texts = ["These are 4 words", "Here just three"]
|
|
l0 = [[1, 2], [3, 4], [5, 6], [7, 8]]
|
|
l1 = [[9, 8], [7, 6], [5, 4]]
|
|
list_floats = [OPS.xp.asarray(l0, dtype="f"), OPS.xp.asarray(l1, dtype="f")]
|
|
list_ints = [OPS.xp.asarray(l0, dtype="i"), OPS.xp.asarray(l1, dtype="i")]
|
|
array = OPS.xp.asarray(l1, dtype="f")
|
|
ragged = Ragged(array, OPS.xp.asarray([2, 1], dtype="i"))
|
|
|
|
|
|
def get_docs():
|
|
vocab = Vocab()
|
|
for t in texts:
|
|
for word in t.split():
|
|
hash_id = vocab.strings.add(word)
|
|
vector = numpy.random.uniform(-1, 1, (7,))
|
|
vocab.set_vector(hash_id, vector)
|
|
docs = [English(vocab)(t) for t in texts]
|
|
return docs
|
|
|
|
|
|
# Test components with a model of type Model[List[Doc], List[Floats2d]]
|
|
@pytest.mark.parametrize("name", ["tagger", "tok2vec", "morphologizer", "senter"])
|
|
def test_components_batching_list(name):
|
|
nlp = English()
|
|
proc = nlp.create_pipe(name)
|
|
util_batch_unbatch_docs_list(proc.model, get_docs(), list_floats)
|
|
|
|
|
|
# Test components with a model of type Model[List[Doc], Floats2d]
|
|
@pytest.mark.parametrize("name", ["textcat"])
|
|
def test_components_batching_array(name):
|
|
nlp = English()
|
|
proc = nlp.create_pipe(name)
|
|
util_batch_unbatch_docs_array(proc.model, get_docs(), array)
|
|
|
|
|
|
LAYERS = [
|
|
(CharacterEmbed(nM=5, nC=3), get_docs(), list_floats),
|
|
(FeatureExtractor([100, 200]), get_docs(), list_ints),
|
|
(StaticVectors(), get_docs(), ragged),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("model,in_data,out_data", LAYERS)
|
|
def test_layers_batching_all(model, in_data, out_data):
|
|
# In = List[Doc]
|
|
if isinstance(in_data, list) and isinstance(in_data[0], Doc):
|
|
if isinstance(out_data, OPS.xp.ndarray) and out_data.ndim == 2:
|
|
util_batch_unbatch_docs_array(model, in_data, out_data)
|
|
elif (
|
|
isinstance(out_data, list)
|
|
and isinstance(out_data[0], OPS.xp.ndarray)
|
|
and out_data[0].ndim == 2
|
|
):
|
|
util_batch_unbatch_docs_list(model, in_data, out_data)
|
|
elif isinstance(out_data, Ragged):
|
|
util_batch_unbatch_docs_ragged(model, in_data, out_data)
|
|
|
|
|
|
def util_batch_unbatch_docs_list(
|
|
model: Model[List[Doc], List[Array2d]], in_data: List[Doc], out_data: List[Array2d]
|
|
):
|
|
with data_validation(True):
|
|
model.initialize(in_data, out_data)
|
|
Y_batched = model.predict(in_data)
|
|
Y_not_batched = [model.predict([u])[0] for u in in_data]
|
|
for i in range(len(Y_batched)):
|
|
assert_almost_equal(
|
|
OPS.to_numpy(Y_batched[i]), OPS.to_numpy(Y_not_batched[i]), decimal=4
|
|
)
|
|
|
|
|
|
def util_batch_unbatch_docs_array(
|
|
model: Model[List[Doc], Array2d], in_data: List[Doc], out_data: Array2d
|
|
):
|
|
with data_validation(True):
|
|
model.initialize(in_data, out_data)
|
|
Y_batched = model.predict(in_data).tolist()
|
|
Y_not_batched = [model.predict([u])[0].tolist() for u in in_data]
|
|
assert_almost_equal(Y_batched, Y_not_batched, decimal=4)
|
|
|
|
|
|
def util_batch_unbatch_docs_ragged(
|
|
model: Model[List[Doc], Ragged], in_data: List[Doc], out_data: Ragged
|
|
):
|
|
with data_validation(True):
|
|
model.initialize(in_data, out_data)
|
|
Y_batched = model.predict(in_data).data.tolist()
|
|
Y_not_batched = []
|
|
for u in in_data:
|
|
Y_not_batched.extend(model.predict([u]).data.tolist())
|
|
assert_almost_equal(Y_batched, Y_not_batched, decimal=4)
|