mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
e2b70df012
* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
478 lines
16 KiB
Python
478 lines
16 KiB
Python
import pickle
|
|
|
|
import pytest
|
|
import srsly
|
|
from thinc.api import Linear
|
|
|
|
import spacy
|
|
from spacy import Vocab, load, registry
|
|
from spacy.lang.en import English
|
|
from spacy.language import Language
|
|
from spacy.pipeline import (
|
|
DependencyParser,
|
|
EntityRecognizer,
|
|
EntityRuler,
|
|
SentenceRecognizer,
|
|
Tagger,
|
|
TextCategorizer,
|
|
TrainablePipe,
|
|
)
|
|
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
|
from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
|
|
from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
|
|
from spacy.pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
|
|
from spacy.tokens import Span
|
|
from spacy.util import ensure_path, load_model
|
|
|
|
from ..util import make_tempdir
|
|
|
|
test_parsers = [DependencyParser, EntityRecognizer]
|
|
|
|
|
|
@pytest.fixture
|
|
def parser(en_vocab):
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
"beam_width": 1,
|
|
"beam_update_prob": 1.0,
|
|
"beam_density": 0.0,
|
|
}
|
|
cfg = {"model": DEFAULT_PARSER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
parser = DependencyParser(en_vocab, model, **config)
|
|
parser.add_label("nsubj")
|
|
return parser
|
|
|
|
|
|
@pytest.fixture
|
|
def blank_parser(en_vocab):
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
"beam_width": 1,
|
|
"beam_update_prob": 1.0,
|
|
"beam_density": 0.0,
|
|
}
|
|
cfg = {"model": DEFAULT_PARSER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
parser = DependencyParser(en_vocab, model, **config)
|
|
return parser
|
|
|
|
|
|
@pytest.fixture
|
|
def taggers(en_vocab):
|
|
cfg = {"model": DEFAULT_TAGGER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
tagger1 = Tagger(en_vocab, model)
|
|
tagger2 = Tagger(en_vocab, model)
|
|
return tagger1, tagger2
|
|
|
|
|
|
@pytest.mark.issue(3456)
|
|
def test_issue3456():
|
|
# this crashed because of a padding error in layer.ops.unflatten in thinc
|
|
nlp = English()
|
|
tagger = nlp.add_pipe("tagger")
|
|
tagger.add_label("A")
|
|
nlp.initialize()
|
|
list(nlp.pipe(["hi", ""]))
|
|
|
|
|
|
@pytest.mark.issue(3526)
|
|
def test_issue_3526_1(en_vocab):
|
|
patterns = [
|
|
{"label": "HELLO", "pattern": "hello world"},
|
|
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
|
|
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
|
|
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
|
|
{"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
|
|
]
|
|
nlp = Language(vocab=en_vocab)
|
|
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
|
ruler_bytes = ruler.to_bytes()
|
|
assert len(ruler) == len(patterns)
|
|
assert len(ruler.labels) == 4
|
|
assert ruler.overwrite
|
|
new_ruler = EntityRuler(nlp)
|
|
new_ruler = new_ruler.from_bytes(ruler_bytes)
|
|
assert len(new_ruler) == len(ruler)
|
|
assert len(new_ruler.labels) == 4
|
|
assert new_ruler.overwrite == ruler.overwrite
|
|
assert new_ruler.ent_id_sep == ruler.ent_id_sep
|
|
|
|
|
|
@pytest.mark.issue(3526)
|
|
def test_issue_3526_2(en_vocab):
|
|
patterns = [
|
|
{"label": "HELLO", "pattern": "hello world"},
|
|
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
|
|
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
|
|
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
|
|
{"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
|
|
]
|
|
nlp = Language(vocab=en_vocab)
|
|
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
|
bytes_old_style = srsly.msgpack_dumps(ruler.patterns)
|
|
new_ruler = EntityRuler(nlp)
|
|
new_ruler = new_ruler.from_bytes(bytes_old_style)
|
|
assert len(new_ruler) == len(ruler)
|
|
for pattern in ruler.patterns:
|
|
assert pattern in new_ruler.patterns
|
|
assert new_ruler.overwrite is not ruler.overwrite
|
|
|
|
|
|
@pytest.mark.issue(3526)
|
|
def test_issue_3526_3(en_vocab):
|
|
patterns = [
|
|
{"label": "HELLO", "pattern": "hello world"},
|
|
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
|
|
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
|
|
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
|
|
{"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
|
|
]
|
|
nlp = Language(vocab=en_vocab)
|
|
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
|
|
with make_tempdir() as tmpdir:
|
|
out_file = tmpdir / "entity_ruler"
|
|
srsly.write_jsonl(out_file.with_suffix(".jsonl"), ruler.patterns)
|
|
new_ruler = EntityRuler(nlp).from_disk(out_file)
|
|
for pattern in ruler.patterns:
|
|
assert pattern in new_ruler.patterns
|
|
assert len(new_ruler) == len(ruler)
|
|
assert new_ruler.overwrite is not ruler.overwrite
|
|
|
|
|
|
@pytest.mark.issue(3526)
|
|
def test_issue_3526_4(en_vocab):
|
|
nlp = Language(vocab=en_vocab)
|
|
patterns = [{"label": "ORG", "pattern": "Apple"}]
|
|
config = {"overwrite_ents": True}
|
|
ruler = nlp.add_pipe("entity_ruler", config=config)
|
|
ruler.add_patterns(patterns)
|
|
with make_tempdir() as tmpdir:
|
|
nlp.to_disk(tmpdir)
|
|
ruler = nlp.get_pipe("entity_ruler")
|
|
assert ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
|
|
assert ruler.overwrite is True
|
|
nlp2 = load(tmpdir)
|
|
new_ruler = nlp2.get_pipe("entity_ruler")
|
|
assert new_ruler.patterns == [{"label": "ORG", "pattern": "Apple"}]
|
|
assert new_ruler.overwrite is True
|
|
|
|
|
|
@pytest.mark.issue(4042)
|
|
def test_issue4042():
|
|
"""Test that serialization of an EntityRuler before NER works fine."""
|
|
nlp = English()
|
|
# add ner pipe
|
|
ner = nlp.add_pipe("ner")
|
|
ner.add_label("SOME_LABEL")
|
|
nlp.initialize()
|
|
# Add entity ruler
|
|
patterns = [
|
|
{"label": "MY_ORG", "pattern": "Apple"},
|
|
{"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]},
|
|
]
|
|
# works fine with "after"
|
|
ruler = nlp.add_pipe("entity_ruler", before="ner")
|
|
ruler.add_patterns(patterns)
|
|
doc1 = nlp("What do you think about Apple ?")
|
|
assert doc1.ents[0].label_ == "MY_ORG"
|
|
|
|
with make_tempdir() as d:
|
|
output_dir = ensure_path(d)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
nlp.to_disk(output_dir)
|
|
nlp2 = load_model(output_dir)
|
|
doc2 = nlp2("What do you think about Apple ?")
|
|
assert doc2.ents[0].label_ == "MY_ORG"
|
|
|
|
|
|
@pytest.mark.issue(4042)
|
|
def test_issue4042_bug2():
|
|
"""
|
|
Test that serialization of an NER works fine when new labels were added.
|
|
This is the second bug of two bugs underlying the issue 4042.
|
|
"""
|
|
nlp1 = English()
|
|
# add ner pipe
|
|
ner1 = nlp1.add_pipe("ner")
|
|
ner1.add_label("SOME_LABEL")
|
|
nlp1.initialize()
|
|
# add a new label to the doc
|
|
doc1 = nlp1("What do you think about Apple ?")
|
|
assert len(ner1.labels) == 1
|
|
assert "SOME_LABEL" in ner1.labels
|
|
apple_ent = Span(doc1, 5, 6, label="MY_ORG")
|
|
doc1.ents = list(doc1.ents) + [apple_ent]
|
|
# Add the label explicitly. Previously we didn't require this.
|
|
ner1.add_label("MY_ORG")
|
|
ner1(doc1)
|
|
assert len(ner1.labels) == 2
|
|
assert "SOME_LABEL" in ner1.labels
|
|
assert "MY_ORG" in ner1.labels
|
|
with make_tempdir() as d:
|
|
# assert IO goes fine
|
|
output_dir = ensure_path(d)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
ner1.to_disk(output_dir)
|
|
config = {}
|
|
ner2 = nlp1.create_pipe("ner", config=config)
|
|
ner2.from_disk(output_dir)
|
|
assert len(ner2.labels) == 2
|
|
|
|
|
|
@pytest.mark.issue(4725)
|
|
def test_issue4725_1():
|
|
"""Ensure the pickling of the NER goes well"""
|
|
vocab = Vocab(vectors_name="test_vocab_add_vector")
|
|
nlp = English(vocab=vocab)
|
|
config = {
|
|
"update_with_oracle_cut_size": 111,
|
|
}
|
|
ner = nlp.create_pipe("ner", config=config)
|
|
with make_tempdir() as tmp_path:
|
|
with (tmp_path / "ner.pkl").open("wb") as file_:
|
|
pickle.dump(ner, file_)
|
|
assert ner.cfg["update_with_oracle_cut_size"] == 111
|
|
|
|
with (tmp_path / "ner.pkl").open("rb") as file_:
|
|
ner2 = pickle.load(file_)
|
|
assert ner2.cfg["update_with_oracle_cut_size"] == 111
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
|
|
cfg = {"model": DEFAULT_PARSER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
parser = Parser(en_vocab, model)
|
|
new_parser = Parser(en_vocab, model)
|
|
new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
|
|
bytes_2 = new_parser.to_bytes(exclude=["vocab"])
|
|
bytes_3 = parser.to_bytes(exclude=["vocab"])
|
|
assert len(bytes_2) == len(bytes_3)
|
|
assert bytes_2 == bytes_3
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_parser_strings(Parser):
|
|
vocab1 = Vocab()
|
|
label = "FunnyLabel"
|
|
assert label not in vocab1.strings
|
|
cfg = {"model": DEFAULT_PARSER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
parser1 = Parser(vocab1, model)
|
|
parser1.add_label(label)
|
|
assert label in parser1.vocab.strings
|
|
vocab2 = Vocab()
|
|
assert label not in vocab2.strings
|
|
parser2 = Parser(vocab2, model)
|
|
parser2 = parser2.from_bytes(parser1.to_bytes(exclude=["vocab"]))
|
|
assert label in parser2.vocab.strings
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
|
|
cfg = {"model": DEFAULT_PARSER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
parser = Parser(en_vocab, model)
|
|
with make_tempdir() as d:
|
|
file_path = d / "parser"
|
|
parser.to_disk(file_path)
|
|
parser_d = Parser(en_vocab, model)
|
|
parser_d = parser_d.from_disk(file_path)
|
|
parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
|
|
parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
|
|
assert len(parser_bytes) == len(parser_d_bytes)
|
|
assert parser_bytes == parser_d_bytes
|
|
|
|
|
|
def test_to_from_bytes(parser, blank_parser):
|
|
assert parser.model is not True
|
|
assert blank_parser.model is not True
|
|
assert blank_parser.moves.n_moves != parser.moves.n_moves
|
|
bytes_data = parser.to_bytes(exclude=["vocab"])
|
|
# the blank parser needs to be resized before we can call from_bytes
|
|
blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves)
|
|
blank_parser.from_bytes(bytes_data)
|
|
assert blank_parser.model is not True
|
|
assert blank_parser.moves.n_moves == parser.moves.n_moves
|
|
|
|
|
|
def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
|
|
tagger1 = taggers[0]
|
|
tagger1_b = tagger1.to_bytes()
|
|
tagger1 = tagger1.from_bytes(tagger1_b)
|
|
assert tagger1.to_bytes() == tagger1_b
|
|
cfg = {"model": DEFAULT_TAGGER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b)
|
|
new_tagger1_b = new_tagger1.to_bytes()
|
|
assert len(new_tagger1_b) == len(tagger1_b)
|
|
assert new_tagger1_b == tagger1_b
|
|
|
|
|
|
def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
|
|
tagger1, tagger2 = taggers
|
|
with make_tempdir() as d:
|
|
file_path1 = d / "tagger1"
|
|
file_path2 = d / "tagger2"
|
|
tagger1.to_disk(file_path1)
|
|
tagger2.to_disk(file_path2)
|
|
cfg = {"model": DEFAULT_TAGGER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
|
|
tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
|
|
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
|
|
|
|
|
|
def test_serialize_tagger_strings(en_vocab, de_vocab, taggers):
|
|
label = "SomeWeirdLabel"
|
|
assert label not in en_vocab.strings
|
|
assert label not in de_vocab.strings
|
|
tagger = taggers[0]
|
|
assert label not in tagger.vocab.strings
|
|
with make_tempdir() as d:
|
|
# check that custom labels are serialized as part of the component's strings.jsonl
|
|
tagger.add_label(label)
|
|
assert label in tagger.vocab.strings
|
|
file_path = d / "tagger1"
|
|
tagger.to_disk(file_path)
|
|
# ensure that the custom strings are loaded back in when using the tagger in another pipeline
|
|
cfg = {"model": DEFAULT_TAGGER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
tagger2 = Tagger(de_vocab, model).from_disk(file_path)
|
|
assert label in tagger2.vocab.strings
|
|
|
|
|
|
@pytest.mark.issue(1105)
|
|
def test_serialize_textcat_empty(en_vocab):
|
|
# See issue #1105
|
|
cfg = {"model": DEFAULT_SINGLE_TEXTCAT_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
textcat = TextCategorizer(en_vocab, model, threshold=0.5)
|
|
textcat.to_bytes(exclude=["vocab"])
|
|
|
|
|
|
@pytest.mark.parametrize("Parser", test_parsers)
|
|
def test_serialize_pipe_exclude(en_vocab, Parser):
|
|
cfg = {"model": DEFAULT_PARSER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
|
|
def get_new_parser():
|
|
new_parser = Parser(en_vocab, model)
|
|
return new_parser
|
|
|
|
parser = Parser(en_vocab, model)
|
|
parser.cfg["foo"] = "bar"
|
|
new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
|
|
assert "foo" in new_parser.cfg
|
|
new_parser = get_new_parser().from_bytes(
|
|
parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
|
|
)
|
|
assert "foo" not in new_parser.cfg
|
|
new_parser = get_new_parser().from_bytes(
|
|
parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
|
|
)
|
|
assert "foo" not in new_parser.cfg
|
|
|
|
|
|
def test_serialize_sentencerecognizer(en_vocab):
|
|
cfg = {"model": DEFAULT_SENTER_MODEL}
|
|
model = registry.resolve(cfg, validate=True)["model"]
|
|
sr = SentenceRecognizer(en_vocab, model)
|
|
sr_b = sr.to_bytes()
|
|
sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b)
|
|
assert sr.to_bytes() == sr_d.to_bytes()
|
|
|
|
|
|
def test_serialize_pipeline_disable_enable():
|
|
nlp = English()
|
|
nlp.add_pipe("ner")
|
|
nlp.add_pipe("tagger")
|
|
nlp.disable_pipe("tagger")
|
|
assert nlp.config["nlp"]["disabled"] == ["tagger"]
|
|
config = nlp.config.copy()
|
|
nlp2 = English.from_config(config)
|
|
assert nlp2.pipe_names == ["ner"]
|
|
assert nlp2.component_names == ["ner", "tagger"]
|
|
assert nlp2.disabled == ["tagger"]
|
|
assert nlp2.config["nlp"]["disabled"] == ["tagger"]
|
|
with make_tempdir() as d:
|
|
nlp2.to_disk(d)
|
|
nlp3 = spacy.load(d)
|
|
assert nlp3.pipe_names == ["ner"]
|
|
assert nlp3.component_names == ["ner", "tagger"]
|
|
with make_tempdir() as d:
|
|
nlp3.to_disk(d)
|
|
nlp4 = spacy.load(d, disable=["ner"])
|
|
assert nlp4.pipe_names == []
|
|
assert nlp4.component_names == ["ner", "tagger"]
|
|
assert nlp4.disabled == ["ner", "tagger"]
|
|
with make_tempdir() as d:
|
|
nlp.to_disk(d)
|
|
nlp5 = spacy.load(d, exclude=["tagger"])
|
|
assert nlp5.pipe_names == ["ner"]
|
|
assert nlp5.component_names == ["ner"]
|
|
assert nlp5.disabled == []
|
|
|
|
|
|
def test_serialize_custom_trainable_pipe():
|
|
class BadCustomPipe1(TrainablePipe):
|
|
def __init__(self, vocab):
|
|
pass
|
|
|
|
class BadCustomPipe2(TrainablePipe):
|
|
def __init__(self, vocab):
|
|
self.vocab = vocab
|
|
self.model = None
|
|
|
|
class CustomPipe(TrainablePipe):
|
|
def __init__(self, vocab, model):
|
|
self.vocab = vocab
|
|
self.model = model
|
|
|
|
pipe = BadCustomPipe1(Vocab())
|
|
with pytest.raises(ValueError):
|
|
pipe.to_bytes()
|
|
with make_tempdir() as d:
|
|
with pytest.raises(ValueError):
|
|
pipe.to_disk(d)
|
|
pipe = BadCustomPipe2(Vocab())
|
|
with pytest.raises(ValueError):
|
|
pipe.to_bytes()
|
|
with make_tempdir() as d:
|
|
with pytest.raises(ValueError):
|
|
pipe.to_disk(d)
|
|
pipe = CustomPipe(Vocab(), Linear())
|
|
pipe_bytes = pipe.to_bytes()
|
|
new_pipe = CustomPipe(Vocab(), Linear()).from_bytes(pipe_bytes)
|
|
assert new_pipe.to_bytes() == pipe_bytes
|
|
with make_tempdir() as d:
|
|
pipe.to_disk(d)
|
|
new_pipe = CustomPipe(Vocab(), Linear()).from_disk(d)
|
|
assert new_pipe.to_bytes() == pipe_bytes
|
|
|
|
|
|
def test_load_without_strings():
|
|
nlp = spacy.blank("en")
|
|
orig_strings_length = len(nlp.vocab.strings)
|
|
word = "unlikely_word_" * 20
|
|
nlp.vocab.strings.add(word)
|
|
assert len(nlp.vocab.strings) == orig_strings_length + 1
|
|
with make_tempdir() as d:
|
|
nlp.to_disk(d)
|
|
# reload with strings
|
|
reloaded_nlp = load(d)
|
|
assert len(nlp.vocab.strings) == len(reloaded_nlp.vocab.strings)
|
|
assert word in reloaded_nlp.vocab.strings
|
|
# reload without strings
|
|
reloaded_nlp = load(d, exclude=["strings"])
|
|
assert orig_strings_length == len(reloaded_nlp.vocab.strings)
|
|
assert word not in reloaded_nlp.vocab.strings
|