mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
698b8b495f
* Clean up old Matcher call style related stuff In v2 Matcher.add was called with (key, on_match, *patterns). In v3 this was changed to (key, patterns, *, on_match=None), but there were various points where the old call syntax was documented or handled specially. This removes all those. The Matcher itself didn't need any code changes, as it just gives a generic type error. However the PhraseMatcher required some changes because it would automatically "fix" the old call style. Surprisingly, the tokenizer was still using the old call style in one place. After these changes tests failed in two places: 1. one test for the "new" call style, including the "old" call style. I removed this test. 2. deserializing the PhraseMatcher fails because the input docs are a set. I am not sure why 2 is happening - I guess it's a quirk of the serialization format? - so for now I just convert the set to a list when deserializing. The check that the input Docs are a List in the PhraseMatcher is a new check, but makes it parallel with the other Matchers, which seemed like the right thing to do. * Add notes related to input docs / deserialization type * Remove Typing import * Remove old note about call style change * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Use separate method for setting internal doc representations In addition to the title change, this changes the internal dict to be a defaultdict, instead of a dict with frequent use of setdefault. * Add _add_from_arrays for unpickling * Cleanup around adding from arrays This moves adding to internal structures into the private batch method, and removes the single-add method. This has one behavioral change for `add`, in that if something is wrong with the list of input Docs (such as one of the items not being a Doc), valid items before the invalid one will not be added. Also the callback will not be updated if anything is invalid. This change should not be significant. This also adds a test to check failure when given a non-Doc. * Update spacy/matcher/phrasematcher.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
862 lines
36 KiB
Cython
862 lines
36 KiB
Cython
# cython: embedsignature=True, profile=True, binding=True
|
|
from cython.operator cimport dereference as deref
|
|
from cython.operator cimport preincrement as preinc
|
|
from libc.string cimport memcpy, memset
|
|
from libcpp.set cimport set as stdset
|
|
from cymem.cymem cimport Pool
|
|
from preshed.maps cimport PreshMap
|
|
cimport cython
|
|
|
|
import re
|
|
|
|
from .tokens.doc cimport Doc
|
|
from .strings cimport hash_string
|
|
from .lexeme cimport EMPTY_LEXEME
|
|
|
|
from .attrs import intify_attrs
|
|
from .symbols import ORTH, NORM
|
|
from .errors import Errors
|
|
from . import util
|
|
from .util import get_words_and_spaces
|
|
from .attrs import intify_attrs
|
|
from .symbols import ORTH
|
|
from .scorer import Scorer
|
|
from .training import validate_examples
|
|
from .tokens import Span
|
|
|
|
|
|
cdef class Tokenizer:
|
|
"""Segment text, and create Doc objects with the discovered segment
|
|
boundaries.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer
|
|
"""
|
|
def __init__(self, Vocab vocab, rules=None, prefix_search=None,
|
|
suffix_search=None, infix_finditer=None, token_match=None,
|
|
url_match=None, faster_heuristics=True):
|
|
"""Create a `Tokenizer`, to create `Doc` objects given unicode text.
|
|
|
|
vocab (Vocab): A storage container for lexical types.
|
|
rules (dict): Exceptions and special-cases for the tokenizer.
|
|
prefix_search (callable): A function matching the signature of
|
|
`re.compile(string).search` to match prefixes.
|
|
suffix_search (callable): A function matching the signature of
|
|
`re.compile(string).search` to match suffixes.
|
|
infix_finditer (callable): A function matching the signature of
|
|
`re.compile(string).finditer` to find infixes.
|
|
token_match (callable): A function matching the signature of
|
|
`re.compile(string).match`, for matching strings to be
|
|
recognized as tokens.
|
|
url_match (callable): A function matching the signature of
|
|
`re.compile(string).match`, for matching strings to be
|
|
recognized as urls.
|
|
faster_heuristics (bool): Whether to restrict the final
|
|
Matcher-based pass for rules to those containing affixes or space.
|
|
Defaults to True.
|
|
|
|
EXAMPLE:
|
|
>>> tokenizer = Tokenizer(nlp.vocab)
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#init
|
|
"""
|
|
self.mem = Pool()
|
|
self._cache = PreshMap()
|
|
self._specials = PreshMap()
|
|
self.token_match = token_match
|
|
self.url_match = url_match
|
|
self.prefix_search = prefix_search
|
|
self.suffix_search = suffix_search
|
|
self.infix_finditer = infix_finditer
|
|
self.vocab = vocab
|
|
self.faster_heuristics = faster_heuristics
|
|
self._rules = {}
|
|
self._special_matcher = PhraseMatcher(self.vocab)
|
|
self._load_special_cases(rules)
|
|
|
|
property token_match:
|
|
def __get__(self):
|
|
return self._token_match
|
|
|
|
def __set__(self, token_match):
|
|
self._token_match = token_match
|
|
self._reload_special_cases()
|
|
|
|
property url_match:
|
|
def __get__(self):
|
|
return self._url_match
|
|
|
|
def __set__(self, url_match):
|
|
self._url_match = url_match
|
|
self._reload_special_cases()
|
|
|
|
property prefix_search:
|
|
def __get__(self):
|
|
return self._prefix_search
|
|
|
|
def __set__(self, prefix_search):
|
|
self._prefix_search = prefix_search
|
|
self._reload_special_cases()
|
|
|
|
property suffix_search:
|
|
def __get__(self):
|
|
return self._suffix_search
|
|
|
|
def __set__(self, suffix_search):
|
|
self._suffix_search = suffix_search
|
|
self._reload_special_cases()
|
|
|
|
property infix_finditer:
|
|
def __get__(self):
|
|
return self._infix_finditer
|
|
|
|
def __set__(self, infix_finditer):
|
|
self._infix_finditer = infix_finditer
|
|
self._reload_special_cases()
|
|
|
|
property rules:
|
|
def __get__(self):
|
|
return self._rules
|
|
|
|
def __set__(self, rules):
|
|
self._rules = {}
|
|
self._flush_cache()
|
|
self._flush_specials()
|
|
self._cache = PreshMap()
|
|
self._specials = PreshMap()
|
|
self._load_special_cases(rules)
|
|
|
|
property faster_heuristics:
|
|
def __get__(self):
|
|
return self._faster_heuristics
|
|
|
|
def __set__(self, faster_heuristics):
|
|
self._faster_heuristics = faster_heuristics
|
|
self._reload_special_cases()
|
|
|
|
def __reduce__(self):
|
|
args = (self.vocab,
|
|
self.rules,
|
|
self.prefix_search,
|
|
self.suffix_search,
|
|
self.infix_finditer,
|
|
self.token_match,
|
|
self.url_match)
|
|
return (self.__class__, args, None, None)
|
|
|
|
def __call__(self, str string):
|
|
"""Tokenize a string.
|
|
|
|
string (str): The string to tokenize.
|
|
RETURNS (Doc): A container for linguistic annotations.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#call
|
|
"""
|
|
doc = self._tokenize_affixes(string, True)
|
|
self._apply_special_cases(doc)
|
|
return doc
|
|
|
|
@cython.boundscheck(False)
|
|
cdef Doc _tokenize_affixes(self, str string, bint with_special_cases):
|
|
"""Tokenize according to affix and token_match settings.
|
|
|
|
string (str): The string to tokenize.
|
|
RETURNS (Doc): A container for linguistic annotations.
|
|
"""
|
|
if len(string) >= (2 ** 30):
|
|
raise ValueError(Errors.E025.format(length=len(string)))
|
|
cdef int length = len(string)
|
|
cdef Doc doc = Doc(self.vocab)
|
|
if length == 0:
|
|
return doc
|
|
cdef int i = 0
|
|
cdef int start = 0
|
|
cdef int has_special = 0
|
|
cdef bint in_ws = string[0].isspace()
|
|
cdef str span
|
|
# The task here is much like string.split, but not quite
|
|
# We find spans of whitespace and non-space characters, and ignore
|
|
# spans that are exactly ' '. So, our sequences will all be separated
|
|
# by either ' ' or nothing.
|
|
for uc in string:
|
|
if uc.isspace() != in_ws:
|
|
if start < i:
|
|
# When we want to make this fast, get the data buffer once
|
|
# with PyUnicode_AS_DATA, and then maintain a start_byte
|
|
# and end_byte, so we can call hash64 directly. That way
|
|
# we don't have to create the slice when we hit the cache.
|
|
span = string[start:i]
|
|
key = hash_string(span)
|
|
if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
|
|
self._tokenize(doc, span, key, &has_special, with_special_cases)
|
|
if uc == ' ':
|
|
doc.c[doc.length - 1].spacy = True
|
|
start = i + 1
|
|
else:
|
|
start = i
|
|
in_ws = not in_ws
|
|
i += 1
|
|
if start < i:
|
|
span = string[start:]
|
|
key = hash_string(span)
|
|
if not self._try_specials_and_cache(key, doc, &has_special, with_special_cases):
|
|
self._tokenize(doc, span, key, &has_special, with_special_cases)
|
|
doc.c[doc.length - 1].spacy = string[-1] == " " and not in_ws
|
|
return doc
|
|
|
|
def pipe(self, texts, batch_size=1000):
|
|
"""Tokenize a stream of texts.
|
|
|
|
texts: A sequence of unicode texts.
|
|
batch_size (int): Number of texts to accumulate in an internal buffer.
|
|
Defaults to 1000.
|
|
YIELDS (Doc): A sequence of Doc objects, in order.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#pipe
|
|
"""
|
|
for text in texts:
|
|
yield self(text)
|
|
|
|
def _flush_cache(self):
|
|
self._reset_cache([key for key in self._cache])
|
|
|
|
def _reset_cache(self, keys):
|
|
for k in keys:
|
|
cached = <_Cached*>self._cache.get(k)
|
|
del self._cache[k]
|
|
if cached is not NULL:
|
|
self.mem.free(cached)
|
|
|
|
def _flush_specials(self):
|
|
self._special_matcher = PhraseMatcher(self.vocab)
|
|
for k in self._specials:
|
|
cached = <_Cached*>self._specials.get(k)
|
|
del self._specials[k]
|
|
if cached is not NULL:
|
|
self.mem.free(cached)
|
|
|
|
cdef int _apply_special_cases(self, Doc doc) except -1:
|
|
"""Retokenize doc according to special cases.
|
|
|
|
doc (Doc): Document.
|
|
"""
|
|
cdef int i
|
|
cdef int max_length = 0
|
|
cdef bint modify_in_place
|
|
cdef Pool mem = Pool()
|
|
cdef vector[SpanC] c_matches
|
|
cdef vector[SpanC] c_filtered
|
|
cdef int offset
|
|
cdef int modified_doc_length
|
|
# Find matches for special cases
|
|
self._special_matcher.find_matches(doc, 0, doc.length, &c_matches)
|
|
# Skip processing if no matches
|
|
if c_matches.size() == 0:
|
|
return True
|
|
self._filter_special_spans(c_matches, c_filtered, doc.length)
|
|
# Put span info in span.start-indexed dict and calculate maximum
|
|
# intermediate document size
|
|
(span_data, max_length, modify_in_place) = self._prepare_special_spans(doc, c_filtered)
|
|
# If modifications never increase doc length, can modify in place
|
|
if modify_in_place:
|
|
tokens = doc.c
|
|
# Otherwise create a separate array to store modified tokens
|
|
else:
|
|
assert max_length > 0
|
|
tokens = <TokenC*>mem.alloc(max_length, sizeof(TokenC))
|
|
# Modify tokenization according to filtered special cases
|
|
offset = self._retokenize_special_spans(doc, tokens, span_data)
|
|
# Allocate more memory for doc if needed
|
|
modified_doc_length = doc.length + offset
|
|
while modified_doc_length >= doc.max_length:
|
|
doc._realloc(doc.max_length * 2)
|
|
# If not modified in place, copy tokens back to doc
|
|
if not modify_in_place:
|
|
memcpy(doc.c, tokens, max_length * sizeof(TokenC))
|
|
for i in range(doc.length + offset, doc.length):
|
|
memset(&doc.c[i], 0, sizeof(TokenC))
|
|
doc.c[i].lex = &EMPTY_LEXEME
|
|
doc.length = doc.length + offset
|
|
return True
|
|
|
|
cdef void _filter_special_spans(self, vector[SpanC] &original, vector[SpanC] &filtered, int doc_len) nogil:
|
|
|
|
cdef int seen_i
|
|
cdef SpanC span
|
|
cdef stdset[int] seen_tokens
|
|
stdsort(original.begin(), original.end(), len_start_cmp)
|
|
cdef int orig_i = original.size() - 1
|
|
while orig_i >= 0:
|
|
span = original[orig_i]
|
|
if not seen_tokens.count(span.start) and not seen_tokens.count(span.end - 1):
|
|
filtered.push_back(span)
|
|
for seen_i in range(span.start, span.end):
|
|
seen_tokens.insert(seen_i)
|
|
orig_i -= 1
|
|
stdsort(filtered.begin(), filtered.end(), start_cmp)
|
|
|
|
cdef object _prepare_special_spans(self, Doc doc, vector[SpanC] &filtered):
|
|
spans = [doc[match.start:match.end] for match in filtered]
|
|
cdef bint modify_in_place = True
|
|
cdef int curr_length = doc.length
|
|
cdef int max_length = 0
|
|
cdef int span_length_diff = 0
|
|
span_data = {}
|
|
for span in spans:
|
|
rule = self._rules.get(span.text, None)
|
|
span_length_diff = 0
|
|
if rule:
|
|
span_length_diff = len(rule) - (span.end - span.start)
|
|
if span_length_diff > 0:
|
|
modify_in_place = False
|
|
curr_length += span_length_diff
|
|
if curr_length > max_length:
|
|
max_length = curr_length
|
|
span_data[span.start] = (span.text, span.start, span.end, span_length_diff)
|
|
return (span_data, max_length, modify_in_place)
|
|
|
|
cdef int _retokenize_special_spans(self, Doc doc, TokenC* tokens, object span_data):
|
|
cdef int i = 0
|
|
cdef int j = 0
|
|
cdef int offset = 0
|
|
cdef _Cached* cached
|
|
cdef int idx_offset = 0
|
|
cdef int orig_final_spacy
|
|
cdef int orig_idx
|
|
cdef int span_start
|
|
cdef int span_end
|
|
while i < doc.length:
|
|
if not i in span_data:
|
|
tokens[i + offset] = doc.c[i]
|
|
i += 1
|
|
else:
|
|
span = span_data[i]
|
|
span_start = span[1]
|
|
span_end = span[2]
|
|
cached = <_Cached*>self._specials.get(hash_string(span[0]))
|
|
if cached == NULL:
|
|
# Copy original tokens if no rule found
|
|
for j in range(span_end - span_start):
|
|
tokens[i + offset + j] = doc.c[i + j]
|
|
i += span_end - span_start
|
|
else:
|
|
# Copy special case tokens into doc and adjust token and
|
|
# character offsets
|
|
idx_offset = 0
|
|
orig_final_spacy = doc.c[span_end - 1].spacy
|
|
orig_idx = doc.c[i].idx
|
|
for j in range(cached.length):
|
|
tokens[i + offset + j] = cached.data.tokens[j]
|
|
tokens[i + offset + j].idx = orig_idx + idx_offset
|
|
idx_offset += cached.data.tokens[j].lex.length
|
|
if cached.data.tokens[j].spacy:
|
|
idx_offset += 1
|
|
tokens[i + offset + cached.length - 1].spacy = orig_final_spacy
|
|
i += span_end - span_start
|
|
offset += span[3]
|
|
return offset
|
|
|
|
cdef int _try_specials_and_cache(self, hash_t key, Doc tokens, int* has_special, bint with_special_cases) except -1:
|
|
cdef bint specials_hit = 0
|
|
cdef bint cache_hit = 0
|
|
cdef int i
|
|
if with_special_cases:
|
|
cached = <_Cached*>self._specials.get(key)
|
|
if cached == NULL:
|
|
specials_hit = False
|
|
else:
|
|
for i in range(cached.length):
|
|
tokens.push_back(&cached.data.tokens[i], False)
|
|
has_special[0] = 1
|
|
specials_hit = True
|
|
if not specials_hit:
|
|
cached = <_Cached*>self._cache.get(key)
|
|
if cached == NULL:
|
|
cache_hit = False
|
|
else:
|
|
if cached.is_lex:
|
|
for i in range(cached.length):
|
|
tokens.push_back(cached.data.lexemes[i], False)
|
|
else:
|
|
for i in range(cached.length):
|
|
tokens.push_back(&cached.data.tokens[i], False)
|
|
cache_hit = True
|
|
if not specials_hit and not cache_hit:
|
|
return False
|
|
return True
|
|
|
|
cdef int _tokenize(self, Doc tokens, str span, hash_t orig_key, int* has_special, bint with_special_cases) except -1:
|
|
cdef vector[LexemeC*] prefixes
|
|
cdef vector[LexemeC*] suffixes
|
|
cdef int orig_size
|
|
orig_size = tokens.length
|
|
span = self._split_affixes(tokens.mem, span, &prefixes, &suffixes,
|
|
has_special, with_special_cases)
|
|
self._attach_tokens(tokens, span, &prefixes, &suffixes, has_special,
|
|
with_special_cases)
|
|
self._save_cached(&tokens.c[orig_size], orig_key, has_special,
|
|
tokens.length - orig_size)
|
|
|
|
cdef str _split_affixes(self, Pool mem, str string,
|
|
vector[const LexemeC*] *prefixes,
|
|
vector[const LexemeC*] *suffixes,
|
|
int* has_special,
|
|
bint with_special_cases):
|
|
cdef size_t i
|
|
cdef str prefix
|
|
cdef str suffix
|
|
cdef str minus_pre
|
|
cdef str minus_suf
|
|
cdef size_t last_size = 0
|
|
while string and len(string) != last_size:
|
|
if self.token_match and self.token_match(string):
|
|
break
|
|
if with_special_cases and self._specials.get(hash_string(string)) != NULL:
|
|
break
|
|
last_size = len(string)
|
|
pre_len = self.find_prefix(string)
|
|
if pre_len != 0:
|
|
prefix = string[:pre_len]
|
|
minus_pre = string[pre_len:]
|
|
if minus_pre and with_special_cases and self._specials.get(hash_string(minus_pre)) != NULL:
|
|
string = minus_pre
|
|
prefixes.push_back(self.vocab.get(mem, prefix))
|
|
break
|
|
suf_len = self.find_suffix(string[pre_len:])
|
|
if suf_len != 0:
|
|
suffix = string[-suf_len:]
|
|
minus_suf = string[:-suf_len]
|
|
if minus_suf and with_special_cases and self._specials.get(hash_string(minus_suf)) != NULL:
|
|
string = minus_suf
|
|
suffixes.push_back(self.vocab.get(mem, suffix))
|
|
break
|
|
if pre_len and suf_len and (pre_len + suf_len) <= len(string):
|
|
string = string[pre_len:-suf_len]
|
|
prefixes.push_back(self.vocab.get(mem, prefix))
|
|
suffixes.push_back(self.vocab.get(mem, suffix))
|
|
elif pre_len:
|
|
string = minus_pre
|
|
prefixes.push_back(self.vocab.get(mem, prefix))
|
|
elif suf_len:
|
|
string = minus_suf
|
|
suffixes.push_back(self.vocab.get(mem, suffix))
|
|
return string
|
|
|
|
cdef int _attach_tokens(self, Doc tokens, str string,
|
|
vector[const LexemeC*] *prefixes,
|
|
vector[const LexemeC*] *suffixes,
|
|
int* has_special,
|
|
bint with_special_cases) except -1:
|
|
cdef bint specials_hit = 0
|
|
cdef bint cache_hit = 0
|
|
cdef int split, end
|
|
cdef const LexemeC* const* lexemes
|
|
cdef const LexemeC* lexeme
|
|
cdef str span
|
|
cdef int i
|
|
if prefixes.size():
|
|
for i in range(prefixes.size()):
|
|
tokens.push_back(prefixes[0][i], False)
|
|
if string:
|
|
if self._try_specials_and_cache(hash_string(string), tokens, has_special, with_special_cases):
|
|
pass
|
|
elif (self.token_match and self.token_match(string)) or \
|
|
(self.url_match and \
|
|
self.url_match(string)):
|
|
# We're always saying 'no' to spaces here -- the caller will
|
|
# fix up the outermost one, with reference to the original.
|
|
# See Issue #859
|
|
tokens.push_back(self.vocab.get(tokens.mem, string), False)
|
|
else:
|
|
matches = self.find_infix(string)
|
|
if not matches:
|
|
tokens.push_back(self.vocab.get(tokens.mem, string), False)
|
|
else:
|
|
# Let's say we have dyn-o-mite-dave - the regex finds the
|
|
# start and end positions of the hyphens
|
|
start = 0
|
|
start_before_infixes = start
|
|
for match in matches:
|
|
infix_start = match.start()
|
|
infix_end = match.end()
|
|
|
|
if infix_start == start_before_infixes:
|
|
continue
|
|
|
|
if infix_start != start:
|
|
span = string[start:infix_start]
|
|
tokens.push_back(self.vocab.get(tokens.mem, span), False)
|
|
|
|
if infix_start != infix_end:
|
|
# If infix_start != infix_end, it means the infix
|
|
# token is non-empty. Empty infix tokens are useful
|
|
# for tokenization in some languages (see
|
|
# https://github.com/explosion/spaCy/issues/768)
|
|
infix_span = string[infix_start:infix_end]
|
|
tokens.push_back(self.vocab.get(tokens.mem, infix_span), False)
|
|
start = infix_end
|
|
span = string[start:]
|
|
if span:
|
|
tokens.push_back(self.vocab.get(tokens.mem, span), False)
|
|
cdef vector[const LexemeC*].reverse_iterator it = suffixes.rbegin()
|
|
while it != suffixes.rend():
|
|
lexeme = deref(it)
|
|
preinc(it)
|
|
tokens.push_back(lexeme, False)
|
|
|
|
cdef int _save_cached(self, const TokenC* tokens, hash_t key,
|
|
int* has_special, int n) except -1:
|
|
cdef int i
|
|
if n <= 0:
|
|
# avoid mem alloc of zero length
|
|
return 0
|
|
for i in range(n):
|
|
if self.vocab._by_orth.get(tokens[i].lex.orth) == NULL:
|
|
return 0
|
|
# See #1250
|
|
if has_special[0]:
|
|
return 0
|
|
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
|
|
cached.length = n
|
|
cached.is_lex = True
|
|
lexemes = <const LexemeC**>self.mem.alloc(n, sizeof(LexemeC**))
|
|
for i in range(n):
|
|
lexemes[i] = tokens[i].lex
|
|
cached.data.lexemes = <const LexemeC* const*>lexemes
|
|
self._cache.set(key, cached)
|
|
|
|
def find_infix(self, str string):
|
|
"""Find internal split points of the string, such as hyphens.
|
|
|
|
string (str): The string to segment.
|
|
RETURNS (list): A list of `re.MatchObject` objects that have `.start()`
|
|
and `.end()` methods, denoting the placement of internal segment
|
|
separators, e.g. hyphens.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#find_infix
|
|
"""
|
|
if self.infix_finditer is None:
|
|
return 0
|
|
return list(self.infix_finditer(string))
|
|
|
|
def find_prefix(self, str string):
|
|
"""Find the length of a prefix that should be segmented from the
|
|
string, or None if no prefix rules match.
|
|
|
|
string (str): The string to segment.
|
|
RETURNS (int): The length of the prefix if present, otherwise `None`.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#find_prefix
|
|
"""
|
|
if self.prefix_search is None:
|
|
return 0
|
|
match = self.prefix_search(string)
|
|
return (match.end() - match.start()) if match is not None else 0
|
|
|
|
def find_suffix(self, str string):
|
|
"""Find the length of a suffix that should be segmented from the
|
|
string, or None if no suffix rules match.
|
|
|
|
string (str): The string to segment.
|
|
Returns (int): The length of the suffix if present, otherwise `None`.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#find_suffix
|
|
"""
|
|
if self.suffix_search is None:
|
|
return 0
|
|
match = self.suffix_search(string)
|
|
return (match.end() - match.start()) if match is not None else 0
|
|
|
|
def _load_special_cases(self, special_cases):
|
|
"""Add special-case tokenization rules."""
|
|
if special_cases is not None:
|
|
for chunk, substrings in sorted(special_cases.items()):
|
|
self.add_special_case(chunk, substrings)
|
|
|
|
def _validate_special_case(self, chunk, substrings):
|
|
"""Check whether the `ORTH` fields match the string. Check that
|
|
additional features beyond `ORTH` and `NORM` are not set by the
|
|
exception.
|
|
|
|
chunk (str): The string to specially tokenize.
|
|
substrings (iterable): A sequence of dicts, where each dict describes
|
|
a token and its attributes.
|
|
"""
|
|
attrs = [intify_attrs(spec) for spec in substrings]
|
|
orth = "".join([spec[ORTH] for spec in attrs])
|
|
if chunk != orth:
|
|
raise ValueError(Errors.E997.format(chunk=chunk, orth=orth, token_attrs=substrings))
|
|
for substring in attrs:
|
|
for attr in substring:
|
|
if attr not in (ORTH, NORM):
|
|
raise ValueError(Errors.E1005.format(attr=self.vocab.strings[attr], chunk=chunk))
|
|
|
|
def add_special_case(self, str string, substrings):
|
|
"""Add a special-case tokenization rule.
|
|
|
|
string (str): The string to specially tokenize.
|
|
substrings (iterable): A sequence of dicts, where each dict describes
|
|
a token and its attributes. The `ORTH` fields of the attributes
|
|
must exactly match the string when they are concatenated.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#add_special_case
|
|
"""
|
|
self._validate_special_case(string, substrings)
|
|
substrings = list(substrings)
|
|
cached = <_Cached*>self.mem.alloc(1, sizeof(_Cached))
|
|
cached.length = len(substrings)
|
|
cached.is_lex = False
|
|
cached.data.tokens = self.vocab.make_fused_token(substrings)
|
|
key = hash_string(string)
|
|
stale_special = <_Cached*>self._specials.get(key)
|
|
self._specials.set(key, cached)
|
|
if stale_special is not NULL:
|
|
self.mem.free(stale_special)
|
|
self._rules[string] = substrings
|
|
self._flush_cache()
|
|
if not self.faster_heuristics or self.find_prefix(string) or self.find_infix(string) or self.find_suffix(string) or " " in string:
|
|
self._special_matcher.add(string, [self._tokenize_affixes(string, False)])
|
|
|
|
def _reload_special_cases(self):
|
|
self._flush_cache()
|
|
self._flush_specials()
|
|
self._load_special_cases(self._rules)
|
|
|
|
def explain(self, text):
|
|
"""A debugging tokenizer that provides information about which
|
|
tokenizer rule or pattern was matched for each token. The tokens
|
|
produced are identical to `nlp.tokenizer()` except for whitespace
|
|
tokens.
|
|
|
|
string (str): The string to tokenize.
|
|
RETURNS (list): A list of (pattern_string, token_string) tuples
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#explain
|
|
"""
|
|
prefix_search = self.prefix_search
|
|
if prefix_search is None:
|
|
prefix_search = re.compile("a^").search
|
|
suffix_search = self.suffix_search
|
|
if suffix_search is None:
|
|
suffix_search = re.compile("a^").search
|
|
infix_finditer = self.infix_finditer
|
|
if infix_finditer is None:
|
|
infix_finditer = re.compile("a^").finditer
|
|
token_match = self.token_match
|
|
if token_match is None:
|
|
token_match = re.compile("a^").match
|
|
url_match = self.url_match
|
|
if url_match is None:
|
|
url_match = re.compile("a^").match
|
|
special_cases = {}
|
|
for orth, special_tokens in self.rules.items():
|
|
special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings) for special_token in special_tokens]
|
|
tokens = []
|
|
for substring in text.split():
|
|
suffixes = []
|
|
while substring:
|
|
if substring in special_cases:
|
|
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
|
substring = ''
|
|
continue
|
|
while prefix_search(substring) or suffix_search(substring):
|
|
if token_match(substring):
|
|
tokens.append(("TOKEN_MATCH", substring))
|
|
substring = ''
|
|
break
|
|
if substring in special_cases:
|
|
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
|
substring = ''
|
|
break
|
|
if prefix_search(substring):
|
|
split = prefix_search(substring).end()
|
|
# break if pattern matches the empty string
|
|
if split == 0:
|
|
break
|
|
tokens.append(("PREFIX", substring[:split]))
|
|
substring = substring[split:]
|
|
if substring in special_cases:
|
|
continue
|
|
if suffix_search(substring):
|
|
split = suffix_search(substring).start()
|
|
# break if pattern matches the empty string
|
|
if split == len(substring):
|
|
break
|
|
suffixes.append(("SUFFIX", substring[split:]))
|
|
substring = substring[:split]
|
|
if len(substring) == 0:
|
|
continue
|
|
if token_match(substring):
|
|
tokens.append(("TOKEN_MATCH", substring))
|
|
substring = ''
|
|
elif url_match(substring):
|
|
tokens.append(("URL_MATCH", substring))
|
|
substring = ''
|
|
elif substring in special_cases:
|
|
tokens.extend((f"SPECIAL-{i + 1}", self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
|
|
substring = ''
|
|
elif list(infix_finditer(substring)):
|
|
infixes = infix_finditer(substring)
|
|
offset = 0
|
|
for match in infixes:
|
|
if offset == 0 and match.start() == 0:
|
|
continue
|
|
if substring[offset : match.start()]:
|
|
tokens.append(("TOKEN", substring[offset : match.start()]))
|
|
if substring[match.start() : match.end()]:
|
|
tokens.append(("INFIX", substring[match.start() : match.end()]))
|
|
offset = match.end()
|
|
if substring[offset:]:
|
|
tokens.append(("TOKEN", substring[offset:]))
|
|
substring = ''
|
|
elif substring:
|
|
tokens.append(("TOKEN", substring))
|
|
substring = ''
|
|
tokens.extend(reversed(suffixes))
|
|
# Find matches for special cases handled by special matcher
|
|
words, spaces = get_words_and_spaces([t[1] for t in tokens], text)
|
|
t_words = []
|
|
t_spaces = []
|
|
for word, space in zip(words, spaces):
|
|
if not word.isspace():
|
|
t_words.append(word)
|
|
t_spaces.append(space)
|
|
doc = Doc(self.vocab, words=t_words, spaces=t_spaces)
|
|
matches = self._special_matcher(doc)
|
|
spans = [Span(doc, s, e, label=m_id) for m_id, s, e in matches]
|
|
spans = util.filter_spans(spans)
|
|
# Replace matched tokens with their exceptions
|
|
i = 0
|
|
final_tokens = []
|
|
spans_by_start = {s.start: s for s in spans}
|
|
while i < len(tokens):
|
|
if i in spans_by_start:
|
|
span = spans_by_start[i]
|
|
exc = [d[ORTH] for d in special_cases[span.label_]]
|
|
for j, orth in enumerate(exc):
|
|
final_tokens.append((f"SPECIAL-{j + 1}", self.vocab.strings[orth]))
|
|
i += len(span)
|
|
else:
|
|
final_tokens.append(tokens[i])
|
|
i += 1
|
|
return final_tokens
|
|
|
|
def score(self, examples, **kwargs):
|
|
validate_examples(examples, "Tokenizer.score")
|
|
return Scorer.score_tokenization(examples)
|
|
|
|
def to_disk(self, path, **kwargs):
|
|
"""Save the current state to a directory.
|
|
|
|
path (str / Path): A path to a directory, which will be created if
|
|
it doesn't exist.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#to_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
with path.open("wb") as file_:
|
|
file_.write(self.to_bytes(**kwargs))
|
|
|
|
def from_disk(self, path, *, exclude=tuple()):
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
returns it.
|
|
|
|
path (str / Path): A path to a directory.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (Tokenizer): The modified `Tokenizer` object.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#from_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
with path.open("rb") as file_:
|
|
bytes_data = file_.read()
|
|
self.from_bytes(bytes_data, exclude=exclude)
|
|
return self
|
|
|
|
def to_bytes(self, *, exclude=tuple()):
|
|
"""Serialize the current state to a binary string.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized form of the `Tokenizer` object.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#to_bytes
|
|
"""
|
|
serializers = {
|
|
"vocab": lambda: self.vocab.to_bytes(exclude=exclude),
|
|
"prefix_search": lambda: _get_regex_pattern(self.prefix_search),
|
|
"suffix_search": lambda: _get_regex_pattern(self.suffix_search),
|
|
"infix_finditer": lambda: _get_regex_pattern(self.infix_finditer),
|
|
"token_match": lambda: _get_regex_pattern(self.token_match),
|
|
"url_match": lambda: _get_regex_pattern(self.url_match),
|
|
"exceptions": lambda: dict(sorted(self._rules.items())),
|
|
"faster_heuristics": lambda: self.faster_heuristics,
|
|
}
|
|
return util.to_bytes(serializers, exclude)
|
|
|
|
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
"""Load state from a binary string.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (Tokenizer): The `Tokenizer` object.
|
|
|
|
DOCS: https://spacy.io/api/tokenizer#from_bytes
|
|
"""
|
|
data = {}
|
|
deserializers = {
|
|
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
|
|
"prefix_search": lambda b: data.setdefault("prefix_search", b),
|
|
"suffix_search": lambda b: data.setdefault("suffix_search", b),
|
|
"infix_finditer": lambda b: data.setdefault("infix_finditer", b),
|
|
"token_match": lambda b: data.setdefault("token_match", b),
|
|
"url_match": lambda b: data.setdefault("url_match", b),
|
|
"exceptions": lambda b: data.setdefault("rules", b),
|
|
"faster_heuristics": lambda b: data.setdefault("faster_heuristics", b),
|
|
}
|
|
# reset all properties and flush all caches (through rules),
|
|
# reset rules first so that _reload_special_cases is trivial/fast as
|
|
# the other properties are reset
|
|
self.rules = {}
|
|
self.prefix_search = None
|
|
self.suffix_search = None
|
|
self.infix_finditer = None
|
|
self.token_match = None
|
|
self.url_match = None
|
|
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
|
if "prefix_search" in data and isinstance(data["prefix_search"], str):
|
|
self.prefix_search = re.compile(data["prefix_search"]).search
|
|
if "suffix_search" in data and isinstance(data["suffix_search"], str):
|
|
self.suffix_search = re.compile(data["suffix_search"]).search
|
|
if "infix_finditer" in data and isinstance(data["infix_finditer"], str):
|
|
self.infix_finditer = re.compile(data["infix_finditer"]).finditer
|
|
if "token_match" in data and isinstance(data["token_match"], str):
|
|
self.token_match = re.compile(data["token_match"]).match
|
|
if "url_match" in data and isinstance(data["url_match"], str):
|
|
self.url_match = re.compile(data["url_match"]).match
|
|
if "rules" in data and isinstance(data["rules"], dict):
|
|
self.rules = data["rules"]
|
|
if "faster_heuristics" in data:
|
|
self.faster_heuristics = data["faster_heuristics"]
|
|
return self
|
|
|
|
|
|
def _get_regex_pattern(regex):
|
|
"""Get a pattern string for a regex, or None if the pattern is None."""
|
|
return None if regex is None else regex.__self__.pattern
|
|
|
|
|
|
cdef extern from "<algorithm>" namespace "std" nogil:
|
|
void stdsort "sort"(vector[SpanC].iterator,
|
|
vector[SpanC].iterator,
|
|
bint (*)(SpanC, SpanC))
|
|
|
|
|
|
cdef bint len_start_cmp(SpanC a, SpanC b) nogil:
|
|
if a.end - a.start == b.end - b.start:
|
|
return b.start < a.start
|
|
return a.end - a.start < b.end - b.start
|
|
|
|
|
|
cdef bint start_cmp(SpanC a, SpanC b) nogil:
|
|
return a.start < b.start
|