mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-02 21:36:36 +03:00
baf19fd652
* Provide top-level score as `attr_score` * Provide a description of the score as `attr_score_desc` * Provide all potential scores keys, setting unused keys to `None` * Update CLI evaluate accordingly
756 lines
28 KiB
Python
756 lines
28 KiB
Python
import numpy as np
|
||
|
||
from .errors import Errors
|
||
from .util import get_lang_class
|
||
from .morphology import Morphology
|
||
|
||
|
||
class PRFScore:
|
||
"""
|
||
A precision / recall / F score
|
||
"""
|
||
|
||
def __init__(self):
|
||
self.tp = 0
|
||
self.fp = 0
|
||
self.fn = 0
|
||
|
||
def score_set(self, cand, gold):
|
||
self.tp += len(cand.intersection(gold))
|
||
self.fp += len(cand - gold)
|
||
self.fn += len(gold - cand)
|
||
|
||
@property
|
||
def precision(self):
|
||
return self.tp / (self.tp + self.fp + 1e-100)
|
||
|
||
@property
|
||
def recall(self):
|
||
return self.tp / (self.tp + self.fn + 1e-100)
|
||
|
||
@property
|
||
def fscore(self):
|
||
p = self.precision
|
||
r = self.recall
|
||
return 2 * ((p * r) / (p + r + 1e-100))
|
||
|
||
def to_dict(self):
|
||
return {"p": self.precision, "r": self.recall, "f": self.fscore}
|
||
|
||
|
||
class ROCAUCScore:
|
||
"""
|
||
An AUC ROC score.
|
||
"""
|
||
|
||
def __init__(self):
|
||
self.golds = []
|
||
self.cands = []
|
||
self.saved_score = 0.0
|
||
self.saved_score_at_len = 0
|
||
|
||
def score_set(self, cand, gold):
|
||
self.cands.append(cand)
|
||
self.golds.append(gold)
|
||
|
||
@property
|
||
def score(self):
|
||
if len(self.golds) == self.saved_score_at_len:
|
||
return self.saved_score
|
||
try:
|
||
self.saved_score = _roc_auc_score(self.golds, self.cands)
|
||
# catch ValueError: Only one class present in y_true.
|
||
# ROC AUC score is not defined in that case.
|
||
except ValueError:
|
||
self.saved_score = -float("inf")
|
||
self.saved_score_at_len = len(self.golds)
|
||
return self.saved_score
|
||
|
||
|
||
class Scorer:
|
||
"""Compute evaluation scores."""
|
||
|
||
def __init__(self, nlp=None, **cfg):
|
||
"""Initialize the Scorer.
|
||
RETURNS (Scorer): The newly created object.
|
||
|
||
DOCS: https://spacy.io/api/scorer#init
|
||
"""
|
||
self.nlp = nlp
|
||
self.cfg = cfg
|
||
|
||
if not nlp:
|
||
# create a default pipeline
|
||
nlp = get_lang_class("xx")()
|
||
nlp.add_pipe("senter")
|
||
nlp.add_pipe("tagger")
|
||
nlp.add_pipe("morphologizer")
|
||
nlp.add_pipe("parser")
|
||
nlp.add_pipe("ner")
|
||
nlp.add_pipe("textcat")
|
||
self.nlp = nlp
|
||
|
||
def score(self, examples):
|
||
"""Evaluate a list of Examples.
|
||
|
||
examples (Iterable[Example]): The predicted annotations + correct annotations.
|
||
RETURNS (Dict): A dictionary of scores.
|
||
DOCS: https://spacy.io/api/scorer#score
|
||
"""
|
||
scores = {}
|
||
|
||
if hasattr(self.nlp.tokenizer, "score"):
|
||
scores.update(self.nlp.tokenizer.score(examples, **self.cfg))
|
||
for name, component in self.nlp.pipeline:
|
||
if hasattr(component, "score"):
|
||
scores.update(component.score(examples, **self.cfg))
|
||
|
||
return scores
|
||
|
||
@staticmethod
|
||
def score_tokenization(examples, **cfg):
|
||
"""Returns accuracy and PRF scores for tokenization.
|
||
|
||
* token_acc: # correct tokens / # gold tokens
|
||
* token_p/r/f: PRF for token character spans
|
||
|
||
examples (Iterable[Example]): Examples to score
|
||
RETURNS (dict): A dictionary containing the scores token_acc/p/r/f.
|
||
"""
|
||
acc_score = PRFScore()
|
||
prf_score = PRFScore()
|
||
for example in examples:
|
||
gold_doc = example.reference
|
||
pred_doc = example.predicted
|
||
align = example.alignment
|
||
gold_spans = set()
|
||
pred_spans = set()
|
||
for token in gold_doc:
|
||
if token.orth_.isspace():
|
||
continue
|
||
gold_spans.add((token.idx, token.idx + len(token)))
|
||
for token in pred_doc:
|
||
if token.orth_.isspace():
|
||
continue
|
||
pred_spans.add((token.idx, token.idx + len(token)))
|
||
if align.x2y.lengths[token.i] != 1:
|
||
acc_score.fp += 1
|
||
else:
|
||
acc_score.tp += 1
|
||
prf_score.score_set(pred_spans, gold_spans)
|
||
return {
|
||
"token_acc": acc_score.fscore,
|
||
"token_p": prf_score.precision,
|
||
"token_r": prf_score.recall,
|
||
"token_f": prf_score.fscore,
|
||
}
|
||
|
||
@staticmethod
|
||
def score_token_attr(examples, attr, getter=getattr, **cfg):
|
||
"""Returns an accuracy score for a token-level attribute.
|
||
|
||
examples (Iterable[Example]): Examples to score
|
||
attr (str): The attribute to score.
|
||
getter (callable): Defaults to getattr. If provided,
|
||
getter(token, attr) should return the value of the attribute for an
|
||
individual token.
|
||
RETURNS (dict): A dictionary containing the accuracy score under the
|
||
key attr_acc.
|
||
"""
|
||
tag_score = PRFScore()
|
||
for example in examples:
|
||
gold_doc = example.reference
|
||
pred_doc = example.predicted
|
||
align = example.alignment
|
||
gold_tags = set()
|
||
for gold_i, token in enumerate(gold_doc):
|
||
gold_tags.add((gold_i, getter(token, attr)))
|
||
pred_tags = set()
|
||
for token in pred_doc:
|
||
if token.orth_.isspace():
|
||
continue
|
||
if align.x2y.lengths[token.i] == 1:
|
||
gold_i = align.x2y[token.i].dataXd[0, 0]
|
||
pred_tags.add((gold_i, getter(token, attr)))
|
||
tag_score.score_set(pred_tags, gold_tags)
|
||
return {
|
||
attr + "_acc": tag_score.fscore,
|
||
}
|
||
|
||
@staticmethod
|
||
def score_token_attr_per_feat(examples, attr, getter=getattr, **cfg):
|
||
"""Return PRF scores per feat for a token attribute in UFEATS format.
|
||
|
||
examples (Iterable[Example]): Examples to score
|
||
attr (str): The attribute to score.
|
||
getter (callable): Defaults to getattr. If provided,
|
||
getter(token, attr) should return the value of the attribute for an
|
||
individual token.
|
||
RETURNS (dict): A dictionary containing the per-feat PRF scores unders
|
||
the key attr_per_feat.
|
||
"""
|
||
per_feat = {}
|
||
for example in examples:
|
||
pred_doc = example.predicted
|
||
gold_doc = example.reference
|
||
align = example.alignment
|
||
gold_per_feat = {}
|
||
for gold_i, token in enumerate(gold_doc):
|
||
morph = str(getter(token, attr))
|
||
if morph:
|
||
for feat in morph.split(Morphology.FEATURE_SEP):
|
||
field, values = feat.split(Morphology.FIELD_SEP)
|
||
if field not in per_feat:
|
||
per_feat[field] = PRFScore()
|
||
if field not in gold_per_feat:
|
||
gold_per_feat[field] = set()
|
||
gold_per_feat[field].add((gold_i, feat))
|
||
pred_per_feat = {}
|
||
for token in pred_doc:
|
||
if token.orth_.isspace():
|
||
continue
|
||
if align.x2y.lengths[token.i] == 1:
|
||
gold_i = align.x2y[token.i].dataXd[0, 0]
|
||
morph = str(getter(token, attr))
|
||
if morph:
|
||
for feat in morph.split("|"):
|
||
field, values = feat.split("=")
|
||
if field not in per_feat:
|
||
per_feat[field] = PRFScore()
|
||
if field not in pred_per_feat:
|
||
pred_per_feat[field] = set()
|
||
pred_per_feat[field].add((gold_i, feat))
|
||
for field in per_feat:
|
||
per_feat[field].score_set(
|
||
pred_per_feat.get(field, set()), gold_per_feat.get(field, set()),
|
||
)
|
||
return {
|
||
attr + "_per_feat": per_feat,
|
||
}
|
||
|
||
@staticmethod
|
||
def score_spans(examples, attr, getter=getattr, **cfg):
|
||
"""Returns PRF scores for labeled spans.
|
||
|
||
examples (Iterable[Example]): Examples to score
|
||
attr (str): The attribute to score.
|
||
getter (callable): Defaults to getattr. If provided,
|
||
getter(doc, attr) should return the spans for the individual doc.
|
||
RETURNS (dict): A dictionary containing the PRF scores under the
|
||
keys attr_p/r/f and the per-type PRF scores under attr_per_type.
|
||
"""
|
||
score = PRFScore()
|
||
score_per_type = dict()
|
||
for example in examples:
|
||
pred_doc = example.predicted
|
||
gold_doc = example.reference
|
||
# Find all labels in gold and doc
|
||
labels = set(
|
||
[k.label_ for k in getter(gold_doc, attr)]
|
||
+ [k.label_ for k in getter(pred_doc, attr)]
|
||
)
|
||
# Set up all labels for per type scoring and prepare gold per type
|
||
gold_per_type = {label: set() for label in labels}
|
||
for label in labels:
|
||
if label not in score_per_type:
|
||
score_per_type[label] = PRFScore()
|
||
# Find all predidate labels, for all and per type
|
||
gold_spans = set()
|
||
pred_spans = set()
|
||
|
||
# Special case for ents:
|
||
# If we have missing values in the gold, we can't easily tell
|
||
# whether our NER predictions are true.
|
||
# It seems bad but it's what we've always done.
|
||
if attr == "ents" and not all(token.ent_iob != 0 for token in gold_doc):
|
||
continue
|
||
|
||
for span in getter(gold_doc, attr):
|
||
gold_span = (span.label_, span.start, span.end - 1)
|
||
gold_spans.add(gold_span)
|
||
gold_per_type[span.label_].add((span.label_, span.start, span.end - 1))
|
||
pred_per_type = {label: set() for label in labels}
|
||
for span in example.get_aligned_spans_x2y(getter(pred_doc, attr)):
|
||
pred_spans.add((span.label_, span.start, span.end - 1))
|
||
pred_per_type[span.label_].add((span.label_, span.start, span.end - 1))
|
||
# Scores per label
|
||
for k, v in score_per_type.items():
|
||
if k in pred_per_type:
|
||
v.score_set(pred_per_type[k], gold_per_type[k])
|
||
# Score for all labels
|
||
score.score_set(pred_spans, gold_spans)
|
||
results = {
|
||
attr + "_p": score.precision,
|
||
attr + "_r": score.recall,
|
||
attr + "_f": score.fscore,
|
||
attr + "_per_type": {k: v.to_dict() for k, v in score_per_type.items()},
|
||
}
|
||
return results
|
||
|
||
@staticmethod
|
||
def score_cats(
|
||
examples,
|
||
attr,
|
||
getter=getattr,
|
||
labels=[],
|
||
multi_label=True,
|
||
positive_label=None,
|
||
**cfg
|
||
):
|
||
"""Returns PRF and ROC AUC scores for a doc-level attribute with a
|
||
dict with scores for each label like Doc.cats. The reported overall
|
||
score depends on the scorer settings.
|
||
|
||
examples (Iterable[Example]): Examples to score
|
||
attr (str): The attribute to score.
|
||
getter (callable): Defaults to getattr. If provided,
|
||
getter(doc, attr) should return the values for the individual doc.
|
||
labels (Iterable[str]): The set of possible labels. Defaults to [].
|
||
multi_label (bool): Whether the attribute allows multiple labels.
|
||
Defaults to True.
|
||
positive_label (str): The positive label for a binary task with
|
||
exclusive classes. Defaults to None.
|
||
RETURNS (dict): A dictionary containing the scores, with inapplicable
|
||
scores as None:
|
||
for all:
|
||
attr_score (one of attr_f / attr_macro_f / attr_macro_auc),
|
||
attr_score_desc (text description of the overall score),
|
||
attr_f_per_type,
|
||
attr_auc_per_type
|
||
for binary exclusive with positive label: attr_p/r/f
|
||
for 3+ exclusive classes, macro-averaged fscore: attr_macro_f
|
||
for multilabel, macro-averaged AUC: attr_macro_auc
|
||
"""
|
||
score = PRFScore()
|
||
f_per_type = dict()
|
||
auc_per_type = dict()
|
||
for label in labels:
|
||
f_per_type[label] = PRFScore()
|
||
auc_per_type[label] = ROCAUCScore()
|
||
for example in examples:
|
||
gold_doc = example.reference
|
||
pred_doc = example.predicted
|
||
gold_values = getter(gold_doc, attr)
|
||
pred_values = getter(pred_doc, attr)
|
||
if (
|
||
len(gold_values) > 0
|
||
and set(f_per_type) == set(auc_per_type) == set(gold_values)
|
||
and set(gold_values) == set(pred_values)
|
||
):
|
||
gold_val = max(gold_values, key=gold_values.get)
|
||
pred_val = max(pred_values, key=pred_values.get)
|
||
if positive_label:
|
||
score.score_set(
|
||
set([positive_label]) & set([pred_val]),
|
||
set([positive_label]) & set([gold_val]),
|
||
)
|
||
for label in set(gold_values):
|
||
auc_per_type[label].score_set(
|
||
pred_values[label], gold_values[label]
|
||
)
|
||
f_per_type[label].score_set(
|
||
set([label]) & set([pred_val]), set([label]) & set([gold_val])
|
||
)
|
||
elif len(f_per_type) > 0:
|
||
model_labels = set(f_per_type)
|
||
eval_labels = set(gold_values)
|
||
raise ValueError(
|
||
Errors.E162.format(
|
||
model_labels=model_labels, eval_labels=eval_labels
|
||
)
|
||
)
|
||
elif len(auc_per_type) > 0:
|
||
model_labels = set(auc_per_type)
|
||
eval_labels = set(gold_values)
|
||
raise ValueError(
|
||
Errors.E162.format(
|
||
model_labels=model_labels, eval_labels=eval_labels
|
||
)
|
||
)
|
||
results = {
|
||
attr + "_score": None,
|
||
attr + "_score_desc": None,
|
||
attr + "_p": None,
|
||
attr + "_r": None,
|
||
attr + "_f": None,
|
||
attr + "_macro_f": None,
|
||
attr + "_macro_auc": None,
|
||
attr + "_f_per_type": {k: v.to_dict() for k, v in f_per_type.items()},
|
||
attr + "_auc_per_type": {k: v.score for k, v in auc_per_type.items()},
|
||
}
|
||
if len(labels) == 2 and not multi_label and positive_label:
|
||
results[attr + "_p"] = score.precision
|
||
results[attr + "_r"] = score.recall
|
||
results[attr + "_f"] = score.fscore
|
||
results[attr + "_score"] = results[attr + "_f"]
|
||
results[attr + "_score_desc"] = "F (" + positive_label + ")"
|
||
elif not multi_label:
|
||
results[attr + "_macro_f"] = sum(
|
||
[score.fscore for label, score in f_per_type.items()]
|
||
) / (len(f_per_type) + 1e-100)
|
||
results[attr + "_score"] = results[attr + "_macro_f"]
|
||
results[attr + "_score_desc"] = "macro F"
|
||
else:
|
||
results[attr + "_macro_auc"] = max(
|
||
sum([score.score for label, score in auc_per_type.items()])
|
||
/ (len(auc_per_type) + 1e-100),
|
||
-1,
|
||
)
|
||
results[attr + "_score"] = results[attr + "_macro_auc"]
|
||
results[attr + "_score_desc"] = "macro AUC"
|
||
return results
|
||
|
||
@staticmethod
|
||
def score_deps(
|
||
examples,
|
||
attr,
|
||
getter=getattr,
|
||
head_attr="head",
|
||
head_getter=getattr,
|
||
ignore_labels=tuple(),
|
||
**cfg
|
||
):
|
||
"""Returns the UAS, LAS, and LAS per type scores for dependency
|
||
parses.
|
||
|
||
examples (Iterable[Example]): Examples to score
|
||
attr (str): The attribute containing the dependency label.
|
||
getter (callable): Defaults to getattr. If provided,
|
||
getter(token, attr) should return the value of the attribute for an
|
||
individual token.
|
||
head_attr (str): The attribute containing the head token. Defaults to
|
||
'head'.
|
||
head_getter (callable): Defaults to getattr. If provided,
|
||
head_getter(token, attr) should return the value of the head for an
|
||
individual token.
|
||
ignore_labels (Tuple): Labels to ignore while scoring (e.g., punct).
|
||
RETURNS (dict): A dictionary containing the scores:
|
||
attr_uas, attr_las, and attr_las_per_type.
|
||
"""
|
||
unlabelled = PRFScore()
|
||
labelled = PRFScore()
|
||
labelled_per_dep = dict()
|
||
for example in examples:
|
||
gold_doc = example.reference
|
||
pred_doc = example.predicted
|
||
align = example.alignment
|
||
gold_deps = set()
|
||
gold_deps_per_dep = {}
|
||
for gold_i, token in enumerate(gold_doc):
|
||
dep = getter(token, attr)
|
||
head = head_getter(token, head_attr)
|
||
if dep not in ignore_labels:
|
||
gold_deps.add((gold_i, head.i, dep))
|
||
if dep not in labelled_per_dep:
|
||
labelled_per_dep[dep] = PRFScore()
|
||
if dep not in gold_deps_per_dep:
|
||
gold_deps_per_dep[dep] = set()
|
||
gold_deps_per_dep[dep].add((gold_i, head.i, dep))
|
||
pred_deps = set()
|
||
pred_deps_per_dep = {}
|
||
for token in pred_doc:
|
||
if token.orth_.isspace():
|
||
continue
|
||
if align.x2y.lengths[token.i] != 1:
|
||
gold_i = None
|
||
else:
|
||
gold_i = align.x2y[token.i].dataXd[0, 0]
|
||
dep = getter(token, attr)
|
||
head = head_getter(token, head_attr)
|
||
if dep not in ignore_labels and token.orth_.strip():
|
||
if align.x2y.lengths[head.i] == 1:
|
||
gold_head = align.x2y[head.i].dataXd[0, 0]
|
||
else:
|
||
gold_head = None
|
||
# None is indistinct, so we can't just add it to the set
|
||
# Multiple (None, None) deps are possible
|
||
if gold_i is None or gold_head is None:
|
||
unlabelled.fp += 1
|
||
labelled.fp += 1
|
||
else:
|
||
pred_deps.add((gold_i, gold_head, dep))
|
||
if dep not in labelled_per_dep:
|
||
labelled_per_dep[dep] = PRFScore()
|
||
if dep not in pred_deps_per_dep:
|
||
pred_deps_per_dep[dep] = set()
|
||
pred_deps_per_dep[dep].add((gold_i, gold_head, dep))
|
||
labelled.score_set(pred_deps, gold_deps)
|
||
for dep in labelled_per_dep:
|
||
labelled_per_dep[dep].score_set(
|
||
pred_deps_per_dep.get(dep, set()), gold_deps_per_dep.get(dep, set())
|
||
)
|
||
unlabelled.score_set(
|
||
set(item[:2] for item in pred_deps), set(item[:2] for item in gold_deps)
|
||
)
|
||
return {
|
||
attr + "_uas": unlabelled.fscore,
|
||
attr + "_las": labelled.fscore,
|
||
attr
|
||
+ "_las_per_type": {k: v.to_dict() for k, v in labelled_per_dep.items()},
|
||
}
|
||
|
||
|
||
#############################################################################
|
||
#
|
||
# The following implementation of roc_auc_score() is adapted from
|
||
# scikit-learn, which is distributed under the following license:
|
||
#
|
||
# New BSD License
|
||
#
|
||
# Copyright (c) 2007–2019 The scikit-learn developers.
|
||
# All rights reserved.
|
||
#
|
||
#
|
||
# Redistribution and use in source and binary forms, with or without
|
||
# modification, are permitted provided that the following conditions are met:
|
||
#
|
||
# a. Redistributions of source code must retain the above copyright notice,
|
||
# this list of conditions and the following disclaimer.
|
||
# b. Redistributions in binary form must reproduce the above copyright
|
||
# notice, this list of conditions and the following disclaimer in the
|
||
# documentation and/or other materials provided with the distribution.
|
||
# c. Neither the name of the Scikit-learn Developers nor the names of
|
||
# its contributors may be used to endorse or promote products
|
||
# derived from this software without specific prior written
|
||
# permission.
|
||
#
|
||
#
|
||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
|
||
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
||
# DAMAGE.
|
||
|
||
|
||
def _roc_auc_score(y_true, y_score):
|
||
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
|
||
from prediction scores.
|
||
|
||
Note: this implementation is restricted to the binary classification task
|
||
|
||
Parameters
|
||
----------
|
||
y_true : array, shape = [n_samples] or [n_samples, n_classes]
|
||
True binary labels or binary label indicators.
|
||
The multiclass case expects shape = [n_samples] and labels
|
||
with values in ``range(n_classes)``.
|
||
|
||
y_score : array, shape = [n_samples] or [n_samples, n_classes]
|
||
Target scores, can either be probability estimates of the positive
|
||
class, confidence values, or non-thresholded measure of decisions
|
||
(as returned by "decision_function" on some classifiers). For binary
|
||
y_true, y_score is supposed to be the score of the class with greater
|
||
label. The multiclass case expects shape = [n_samples, n_classes]
|
||
where the scores correspond to probability estimates.
|
||
|
||
Returns
|
||
-------
|
||
auc : float
|
||
|
||
References
|
||
----------
|
||
.. [1] `Wikipedia entry for the Receiver operating characteristic
|
||
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_
|
||
|
||
.. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
|
||
Letters, 2006, 27(8):861-874.
|
||
|
||
.. [3] `Analyzing a portion of the ROC curve. McClish, 1989
|
||
<https://www.ncbi.nlm.nih.gov/pubmed/2668680>`_
|
||
"""
|
||
if len(np.unique(y_true)) != 2:
|
||
raise ValueError(Errors.E165)
|
||
fpr, tpr, _ = _roc_curve(y_true, y_score)
|
||
return _auc(fpr, tpr)
|
||
|
||
|
||
def _roc_curve(y_true, y_score):
|
||
"""Compute Receiver operating characteristic (ROC)
|
||
|
||
Note: this implementation is restricted to the binary classification task.
|
||
|
||
Parameters
|
||
----------
|
||
|
||
y_true : array, shape = [n_samples]
|
||
True binary labels. If labels are not either {-1, 1} or {0, 1}, then
|
||
pos_label should be explicitly given.
|
||
|
||
y_score : array, shape = [n_samples]
|
||
Target scores, can either be probability estimates of the positive
|
||
class, confidence values, or non-thresholded measure of decisions
|
||
(as returned by "decision_function" on some classifiers).
|
||
|
||
Returns
|
||
-------
|
||
fpr : array, shape = [>2]
|
||
Increasing false positive rates such that element i is the false
|
||
positive rate of predictions with score >= thresholds[i].
|
||
|
||
tpr : array, shape = [>2]
|
||
Increasing true positive rates such that element i is the true
|
||
positive rate of predictions with score >= thresholds[i].
|
||
|
||
thresholds : array, shape = [n_thresholds]
|
||
Decreasing thresholds on the decision function used to compute
|
||
fpr and tpr. `thresholds[0]` represents no instances being predicted
|
||
and is arbitrarily set to `max(y_score) + 1`.
|
||
|
||
Notes
|
||
-----
|
||
Since the thresholds are sorted from low to high values, they
|
||
are reversed upon returning them to ensure they correspond to both ``fpr``
|
||
and ``tpr``, which are sorted in reversed order during their calculation.
|
||
|
||
References
|
||
----------
|
||
.. [1] `Wikipedia entry for the Receiver operating characteristic
|
||
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_
|
||
|
||
.. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
|
||
Letters, 2006, 27(8):861-874.
|
||
"""
|
||
fps, tps, thresholds = _binary_clf_curve(y_true, y_score)
|
||
|
||
# Add an extra threshold position
|
||
# to make sure that the curve starts at (0, 0)
|
||
tps = np.r_[0, tps]
|
||
fps = np.r_[0, fps]
|
||
thresholds = np.r_[thresholds[0] + 1, thresholds]
|
||
|
||
if fps[-1] <= 0:
|
||
fpr = np.repeat(np.nan, fps.shape)
|
||
else:
|
||
fpr = fps / fps[-1]
|
||
|
||
if tps[-1] <= 0:
|
||
tpr = np.repeat(np.nan, tps.shape)
|
||
else:
|
||
tpr = tps / tps[-1]
|
||
|
||
return fpr, tpr, thresholds
|
||
|
||
|
||
def _binary_clf_curve(y_true, y_score):
|
||
"""Calculate true and false positives per binary classification threshold.
|
||
|
||
Parameters
|
||
----------
|
||
y_true : array, shape = [n_samples]
|
||
True targets of binary classification
|
||
|
||
y_score : array, shape = [n_samples]
|
||
Estimated probabilities or decision function
|
||
|
||
Returns
|
||
-------
|
||
fps : array, shape = [n_thresholds]
|
||
A count of false positives, at index i being the number of negative
|
||
samples assigned a score >= thresholds[i]. The total number of
|
||
negative samples is equal to fps[-1] (thus true negatives are given by
|
||
fps[-1] - fps).
|
||
|
||
tps : array, shape = [n_thresholds <= len(np.unique(y_score))]
|
||
An increasing count of true positives, at index i being the number
|
||
of positive samples assigned a score >= thresholds[i]. The total
|
||
number of positive samples is equal to tps[-1] (thus false negatives
|
||
are given by tps[-1] - tps).
|
||
|
||
thresholds : array, shape = [n_thresholds]
|
||
Decreasing score values.
|
||
"""
|
||
pos_label = 1.0
|
||
|
||
y_true = np.ravel(y_true)
|
||
y_score = np.ravel(y_score)
|
||
|
||
# make y_true a boolean vector
|
||
y_true = y_true == pos_label
|
||
|
||
# sort scores and corresponding truth values
|
||
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
|
||
y_score = y_score[desc_score_indices]
|
||
y_true = y_true[desc_score_indices]
|
||
weight = 1.0
|
||
|
||
# y_score typically has many tied values. Here we extract
|
||
# the indices associated with the distinct values. We also
|
||
# concatenate a value for the end of the curve.
|
||
distinct_value_indices = np.where(np.diff(y_score))[0]
|
||
threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]
|
||
|
||
# accumulate the true positives with decreasing threshold
|
||
tps = _stable_cumsum(y_true * weight)[threshold_idxs]
|
||
fps = 1 + threshold_idxs - tps
|
||
return fps, tps, y_score[threshold_idxs]
|
||
|
||
|
||
def _stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
|
||
"""Use high precision for cumsum and check that final value matches sum
|
||
|
||
Parameters
|
||
----------
|
||
arr : array-like
|
||
To be cumulatively summed as flat
|
||
axis : int, optional
|
||
Axis along which the cumulative sum is computed.
|
||
The default (None) is to compute the cumsum over the flattened array.
|
||
rtol : float
|
||
Relative tolerance, see ``np.allclose``
|
||
atol : float
|
||
Absolute tolerance, see ``np.allclose``
|
||
"""
|
||
out = np.cumsum(arr, axis=axis, dtype=np.float64)
|
||
expected = np.sum(arr, axis=axis, dtype=np.float64)
|
||
if not np.all(
|
||
np.isclose(
|
||
out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True
|
||
)
|
||
):
|
||
raise ValueError(Errors.E163)
|
||
return out
|
||
|
||
|
||
def _auc(x, y):
|
||
"""Compute Area Under the Curve (AUC) using the trapezoidal rule
|
||
|
||
This is a general function, given points on a curve. For computing the
|
||
area under the ROC-curve, see :func:`roc_auc_score`.
|
||
|
||
Parameters
|
||
----------
|
||
x : array, shape = [n]
|
||
x coordinates. These must be either monotonic increasing or monotonic
|
||
decreasing.
|
||
y : array, shape = [n]
|
||
y coordinates.
|
||
|
||
Returns
|
||
-------
|
||
auc : float
|
||
"""
|
||
x = np.ravel(x)
|
||
y = np.ravel(y)
|
||
|
||
direction = 1
|
||
dx = np.diff(x)
|
||
if np.any(dx < 0):
|
||
if np.all(dx <= 0):
|
||
direction = -1
|
||
else:
|
||
raise ValueError(Errors.E164.format(x))
|
||
|
||
area = direction * np.trapz(y, x)
|
||
if isinstance(area, np.memmap):
|
||
# Reductions such as .sum used internally in np.trapz do not return a
|
||
# scalar by default for numpy.memmap instances contrary to
|
||
# regular numpy.ndarray instances.
|
||
area = area.dtype.type(area)
|
||
return area
|