mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	* Move batchers into their own module (and registry) * Update CLI * Update Corpus and batcher * Update tests * Update one config * Merge 'evaluation' block back under [training] * Import batchers in gold __init__ * Fix batchers * Update config * Update schema * Update util * Don't assume train and dev are actually paths * Update onto-joint config * Fix missing import * Format * Format * Update spacy/gold/corpus.py Co-authored-by: Ines Montani <ines@ines.io> * Fix name * Update default config * Fix get_length option in batchers * Update test * Add comment * Pass path into Corpus * Update docstring * Update schema and configs * Update config * Fix test * Fix paths * Fix print * Fix create_train_batches * [training.read_train] -> [training.train_corpus] * Update onto-joint config Co-authored-by: Ines Montani <ines@ines.io>
		
			
				
	
	
		
			111 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			INI
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			INI
		
	
	
	
	
	
| [paths]
 | |
| train = ""
 | |
| dev = ""
 | |
| raw = null
 | |
| init_tok2vec = null
 | |
| 
 | |
| [system]
 | |
| seed = 0
 | |
| use_pytorch_for_gpu_memory = false
 | |
| 
 | |
| [training]
 | |
| seed = ${system:seed}
 | |
| dropout = 0.2
 | |
| init_tok2vec = ${paths:init_tok2vec}
 | |
| vectors = null
 | |
| accumulate_gradient = 1
 | |
| max_steps = 0
 | |
| max_epochs = 0
 | |
| patience = 10000
 | |
| eval_frequency = 200
 | |
| score_weights = {"dep_las": 0.8, "tag_acc": 0.2}
 | |
| 
 | |
| [training.read_train]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths:train}
 | |
| gold_preproc = true
 | |
| max_length = 0
 | |
| limit = 0
 | |
| 
 | |
| [training.read_dev]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths:dev}
 | |
| gold_preproc = ${training.read_train:gold_preproc}
 | |
| max_length = 0
 | |
| limit = 0
 | |
| 
 | |
| [training.batcher]
 | |
| @batchers = "batch_by_words.v1"
 | |
| discard_oversize = false
 | |
| tolerance = 0.2
 | |
| 
 | |
| [training.batcher.size]
 | |
| @schedules = "compounding.v1"
 | |
| start = 100
 | |
| stop = 1000
 | |
| compound = 1.001
 | |
| 
 | |
| [training.optimizer]
 | |
| @optimizers = "Adam.v1"
 | |
| learn_rate = 0.001
 | |
| beta1 = 0.9
 | |
| beta2 = 0.999
 | |
| 
 | |
| [nlp]
 | |
| lang = "en"
 | |
| pipeline = ["tok2vec", "tagger", "parser"]
 | |
| load_vocab_data = false
 | |
| 
 | |
| [nlp.tokenizer]
 | |
| @tokenizers = "spacy.Tokenizer.v1"
 | |
| 
 | |
| [nlp.lemmatizer]
 | |
| @lemmatizers = "spacy.Lemmatizer.v1"
 | |
| 
 | |
| [components]
 | |
| 
 | |
| [components.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [components.parser]
 | |
| factory = "parser"
 | |
| learn_tokens = false
 | |
| min_action_freq = 1
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v1"
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| 
 | |
| [components.parser.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v1"
 | |
| nr_feature_tokens = 8
 | |
| hidden_width = 64
 | |
| maxout_pieces = 3
 | |
| 
 | |
| [components.parser.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| 
 | |
| [components.tok2vec.model]
 | |
| @architectures = "spacy.Tok2Vec.v1"
 | |
| 
 | |
| [components.tok2vec.model.embed]
 | |
| @architectures = "spacy.MultiHashEmbed.v1"
 | |
| width = ${components.tok2vec.model.encode:width}
 | |
| rows = 2000
 | |
| also_embed_subwords = true
 | |
| also_use_static_vectors = false
 | |
| 
 | |
| [components.tok2vec.model.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v1"
 | |
| width = 96
 | |
| depth = 4
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 |