spaCy/spacy/pipeline/functions.py
Ines Montani 43b960c01b
Refactor pipeline components, config and language data (#5759)
* Update with WIP

* Update with WIP

* Update with pipeline serialization

* Update types and pipe factories

* Add deep merge, tidy up and add tests

* Fix pipe creation from config

* Don't validate default configs on load

* Update spacy/language.py

Co-authored-by: Ines Montani <ines@ines.io>

* Adjust factory/component meta error

* Clean up factory args and remove defaults

* Add test for failing empty dict defaults

* Update pipeline handling and methods

* provide KB as registry function instead of as object

* small change in test to make functionality more clear

* update example script for EL configuration

* Fix typo

* Simplify test

* Simplify test

* splitting pipes.pyx into separate files

* moving default configs to each component file

* fix batch_size type

* removing default values from component constructors where possible (TODO: test 4725)

* skip instead of xfail

* Add test for config -> nlp with multiple instances

* pipeline.pipes -> pipeline.pipe

* Tidy up, document, remove kwargs

* small cleanup/generalization for Tok2VecListener

* use DEFAULT_UPSTREAM field

* revert to avoid circular imports

* Fix tests

* Replace deprecated arg

* Make model dirs require config

* fix pickling of keyword-only arguments in constructor

* WIP: clean up and integrate full config

* Add helper to handle function args more reliably

Now also includes keyword-only args

* Fix config composition and serialization

* Improve config debugging and add visual diff

* Remove unused defaults and fix type

* Remove pipeline and factories from meta

* Update spacy/default_config.cfg

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Update spacy/default_config.cfg

* small UX edits

* avoid printing stack trace for debug CLI commands

* Add support for language-specific factories

* specify the section of the config which holds the model to debug

* WIP: add Language.from_config

* Update with language data refactor WIP

* Auto-format

* Add backwards-compat handling for Language.factories

* Update morphologizer.pyx

* Fix morphologizer

* Update and simplify lemmatizers

* Fix Japanese tests

* Port over tagger changes

* Fix Chinese and tests

* Update to latest Thinc

* WIP: xfail first Russian lemmatizer test

* Fix component-specific overrides

* fix nO for output layers in debug_model

* Fix default value

* Fix tests and don't pass objects in config

* Fix deep merging

* Fix lemma lookup data registry

Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed)

* Add types

* Add Vocab.from_config

* Fix typo

* Fix tests

* Make config copying more elegant

* Fix pipe analysis

* Fix lemmatizers and is_base_form

* WIP: move language defaults to config

* Fix morphology type

* Fix vocab

* Remove comment

* Update to latest Thinc

* Add morph rules to config

* Tidy up

* Remove set_morphology option from tagger factory

* Hack use_gpu

* Move [pipeline] to top-level block and make [nlp.pipeline] list

Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them

* Fix use_gpu and resume in CLI

* Auto-format

* Remove resume from config

* Fix formatting and error

* [pipeline] -> [components]

* Fix types

* Fix tagger test: requires set_morphology?

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 13:42:59 +02:00

68 lines
2.1 KiB
Python

from ..language import Language
from ..matcher import Matcher
from ..tokens import Doc
from ..util import filter_spans
@Language.component(
"merge_noun_chunks",
requires=["token.dep", "token.tag", "token.pos"],
retokenizes=True,
)
def merge_noun_chunks(doc: Doc) -> Doc:
"""Merge noun chunks into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun chunks.
DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks
"""
if not doc.is_parsed:
return doc
with doc.retokenize() as retokenizer:
for np in doc.noun_chunks:
attrs = {"tag": np.root.tag, "dep": np.root.dep}
retokenizer.merge(np, attrs=attrs)
return doc
@Language.component(
"merge_entities",
requires=["doc.ents", "token.ent_iob", "token.ent_type"],
retokenizes=True,
)
def merge_entities(doc: Doc):
"""Merge entities into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged entities.
DOCS: https://spacy.io/api/pipeline-functions#merge_entities
"""
with doc.retokenize() as retokenizer:
for ent in doc.ents:
attrs = {"tag": ent.root.tag, "dep": ent.root.dep, "ent_type": ent.label}
retokenizer.merge(ent, attrs=attrs)
return doc
@Language.component("merge_subtokens", requires=["token.dep"], retokenizes=True)
def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
"""Merge subtokens into a single token.
doc (Doc): The Doc object.
label (str): The subtoken dependency label.
RETURNS (Doc): The Doc object with merged subtokens.
DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens
"""
# TODO: make stateful component with "label" config
merger = Matcher(doc.vocab)
merger.add("SUBTOK", None, [{"DEP": label, "op": "+"}])
matches = merger(doc)
spans = filter_spans([doc[start : end + 1] for _, start, end in matches])
with doc.retokenize() as retokenizer:
for span in spans:
retokenizer.merge(span)
return doc