mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
657af5f91f
* 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
1024 lines
42 KiB
Cython
1024 lines
42 KiB
Cython
# cython: infer_types=True, cython: profile=True
|
|
from typing import List
|
|
|
|
from libcpp.vector cimport vector
|
|
from libc.stdint cimport int32_t, int8_t
|
|
from libc.string cimport memset, memcmp
|
|
from cymem.cymem cimport Pool
|
|
from murmurhash.mrmr cimport hash64
|
|
|
|
import re
|
|
import srsly
|
|
import warnings
|
|
|
|
from ..typedefs cimport attr_t
|
|
from ..structs cimport TokenC
|
|
from ..vocab cimport Vocab
|
|
from ..tokens.doc cimport Doc, get_token_attr_for_matcher
|
|
from ..tokens.span cimport Span
|
|
from ..tokens.token cimport Token
|
|
from ..tokens.morphanalysis cimport MorphAnalysis
|
|
from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA, MORPH
|
|
|
|
from ..schemas import validate_token_pattern
|
|
from ..errors import Errors, MatchPatternError, Warnings
|
|
from ..strings import get_string_id
|
|
from ..attrs import IDS
|
|
|
|
|
|
DEF PADDING = 5
|
|
|
|
|
|
cdef class Matcher:
|
|
"""Match sequences of tokens, based on pattern rules.
|
|
|
|
DOCS: https://spacy.io/api/matcher
|
|
USAGE: https://spacy.io/usage/rule-based-matching
|
|
"""
|
|
|
|
def __init__(self, vocab, validate=True):
|
|
"""Create the Matcher.
|
|
|
|
vocab (Vocab): The vocabulary object, which must be shared with the
|
|
documents the matcher will operate on.
|
|
"""
|
|
self._extra_predicates = []
|
|
self._patterns = {}
|
|
self._callbacks = {}
|
|
self._filter = {}
|
|
self._extensions = {}
|
|
self._seen_attrs = set()
|
|
self.vocab = vocab
|
|
self.mem = Pool()
|
|
self.validate = validate
|
|
|
|
def __reduce__(self):
|
|
data = (self.vocab, self._patterns, self._callbacks)
|
|
return (unpickle_matcher, data, None, None)
|
|
|
|
def __len__(self):
|
|
"""Get the number of rules added to the matcher. Note that this only
|
|
returns the number of rules (identical with the number of IDs), not the
|
|
number of individual patterns.
|
|
|
|
RETURNS (int): The number of rules.
|
|
"""
|
|
return len(self._patterns)
|
|
|
|
def __contains__(self, key):
|
|
"""Check whether the matcher contains rules for a match ID.
|
|
|
|
key (str): The match ID.
|
|
RETURNS (bool): Whether the matcher contains rules for this match ID.
|
|
"""
|
|
return self.has_key(key)
|
|
|
|
def add(self, key, patterns, *, on_match=None, greedy: str=None):
|
|
"""Add a match-rule to the matcher. A match-rule consists of: an ID
|
|
key, an on_match callback, and one or more patterns.
|
|
|
|
If the key exists, the patterns are appended to the previous ones, and
|
|
the previous on_match callback is replaced. The `on_match` callback
|
|
will receive the arguments `(matcher, doc, i, matches)`. You can also
|
|
set `on_match` to `None` to not perform any actions.
|
|
|
|
A pattern consists of one or more `token_specs`, where a `token_spec`
|
|
is a dictionary mapping attribute IDs to values, and optionally a
|
|
quantifier operator under the key "op". The available quantifiers are:
|
|
|
|
'!': Negate the pattern, by requiring it to match exactly 0 times.
|
|
'?': Make the pattern optional, by allowing it to match 0 or 1 times.
|
|
'+': Require the pattern to match 1 or more times.
|
|
'*': Allow the pattern to zero or more times.
|
|
|
|
The + and * operators return all possible matches (not just the greedy
|
|
ones). However, the "greedy" argument can filter the final matches
|
|
by returning a non-overlapping set per key, either taking preference to
|
|
the first greedy match ("FIRST"), or the longest ("LONGEST").
|
|
|
|
As of spaCy v2.2.2, Matcher.add supports the future API, which makes
|
|
the patterns the second argument and a list (instead of a variable
|
|
number of arguments). The on_match callback becomes an optional keyword
|
|
argument.
|
|
|
|
key (Union[str, int]): The match ID.
|
|
patterns (list): The patterns to add for the given key.
|
|
on_match (callable): Optional callback executed on match.
|
|
greedy (str): Optional filter: "FIRST" or "LONGEST".
|
|
"""
|
|
errors = {}
|
|
if on_match is not None and not hasattr(on_match, "__call__"):
|
|
raise ValueError(Errors.E171.format(arg_type=type(on_match)))
|
|
if patterns is None or not isinstance(patterns, List): # old API
|
|
raise ValueError(Errors.E948.format(arg_type=type(patterns)))
|
|
if greedy is not None and greedy not in ["FIRST", "LONGEST"]:
|
|
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=greedy))
|
|
for i, pattern in enumerate(patterns):
|
|
if len(pattern) == 0:
|
|
raise ValueError(Errors.E012.format(key=key))
|
|
if not isinstance(pattern, list):
|
|
raise ValueError(Errors.E178.format(pat=pattern, key=key))
|
|
if self.validate:
|
|
errors[i] = validate_token_pattern(pattern)
|
|
if any(err for err in errors.values()):
|
|
raise MatchPatternError(key, errors)
|
|
key = self._normalize_key(key)
|
|
for pattern in patterns:
|
|
try:
|
|
specs = _preprocess_pattern(pattern, self.vocab,
|
|
self._extensions, self._extra_predicates)
|
|
self.patterns.push_back(init_pattern(self.mem, key, specs))
|
|
for spec in specs:
|
|
for attr, _ in spec[1]:
|
|
self._seen_attrs.add(attr)
|
|
except OverflowError, AttributeError:
|
|
raise ValueError(Errors.E154.format()) from None
|
|
self._patterns.setdefault(key, [])
|
|
self._callbacks[key] = on_match
|
|
self._filter[key] = greedy
|
|
self._patterns[key].extend(patterns)
|
|
|
|
def _require_patterns(self) -> None:
|
|
"""Raise a warning if this component has no patterns defined."""
|
|
if len(self) == 0:
|
|
warnings.warn(Warnings.W036.format(name="matcher"))
|
|
|
|
def remove(self, key):
|
|
"""Remove a rule from the matcher. A KeyError is raised if the key does
|
|
not exist.
|
|
|
|
key (str): The ID of the match rule.
|
|
"""
|
|
norm_key = self._normalize_key(key)
|
|
if not norm_key in self._patterns:
|
|
raise ValueError(Errors.E175.format(key=key))
|
|
self._patterns.pop(norm_key)
|
|
self._callbacks.pop(norm_key)
|
|
cdef int i = 0
|
|
while i < self.patterns.size():
|
|
pattern_key = get_ent_id(self.patterns.at(i))
|
|
if pattern_key == norm_key:
|
|
self.patterns.erase(self.patterns.begin()+i)
|
|
else:
|
|
i += 1
|
|
|
|
def has_key(self, key):
|
|
"""Check whether the matcher has a rule with a given key.
|
|
|
|
key (string or int): The key to check.
|
|
RETURNS (bool): Whether the matcher has the rule.
|
|
"""
|
|
return self._normalize_key(key) in self._patterns
|
|
|
|
def get(self, key, default=None):
|
|
"""Retrieve the pattern stored for a key.
|
|
|
|
key (str / int): The key to retrieve.
|
|
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
|
|
"""
|
|
key = self._normalize_key(key)
|
|
if key not in self._patterns:
|
|
return default
|
|
return (self._callbacks[key], self._patterns[key])
|
|
|
|
def pipe(self, docs, batch_size=1000, return_matches=False, as_tuples=False):
|
|
"""Match a stream of documents, yielding them in turn. Deprecated as of
|
|
spaCy v3.0.
|
|
"""
|
|
warnings.warn(Warnings.W105.format(matcher="Matcher"), DeprecationWarning)
|
|
if as_tuples:
|
|
for doc, context in docs:
|
|
matches = self(doc)
|
|
if return_matches:
|
|
yield ((doc, matches), context)
|
|
else:
|
|
yield (doc, context)
|
|
else:
|
|
for doc in docs:
|
|
matches = self(doc)
|
|
if return_matches:
|
|
yield (doc, matches)
|
|
else:
|
|
yield doc
|
|
|
|
def __call__(self, object doclike, *, as_spans=False, allow_missing=False, with_alignments=False):
|
|
"""Find all token sequences matching the supplied pattern.
|
|
|
|
doclike (Doc or Span): The document to match over.
|
|
as_spans (bool): Return Span objects with labels instead of (match_id,
|
|
start, end) tuples.
|
|
allow_missing (bool): Whether to skip checks for missing annotation for
|
|
attributes included in patterns. Defaults to False.
|
|
with_alignments (bool): Return match alignment information, which is
|
|
`List[int]` with length of matched span. Each entry denotes the
|
|
corresponding index of token pattern. If as_spans is set to True,
|
|
this setting is ignored.
|
|
RETURNS (list): A list of `(match_id, start, end)` tuples,
|
|
describing the matches. A match tuple describes a span
|
|
`doc[start:end]`. The `match_id` is an integer. If as_spans is set
|
|
to True, a list of Span objects is returned.
|
|
If with_alignments is set to True and as_spans is set to False,
|
|
A list of `(match_id, start, end, alignments)` tuples is returned.
|
|
"""
|
|
self._require_patterns()
|
|
if isinstance(doclike, Doc):
|
|
doc = doclike
|
|
length = len(doc)
|
|
elif isinstance(doclike, Span):
|
|
doc = doclike.doc
|
|
length = doclike.end - doclike.start
|
|
else:
|
|
raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doclike).__name__))
|
|
# Skip alignments calculations if as_spans is set
|
|
if as_spans:
|
|
with_alignments = False
|
|
cdef Pool tmp_pool = Pool()
|
|
if not allow_missing:
|
|
for attr in (TAG, POS, MORPH, LEMMA, DEP):
|
|
if attr in self._seen_attrs and not doc.has_annotation(attr):
|
|
if attr == TAG:
|
|
pipe = "tagger"
|
|
elif attr in (POS, MORPH):
|
|
pipe = "morphologizer or tagger+attribute_ruler"
|
|
elif attr == LEMMA:
|
|
pipe = "lemmatizer"
|
|
elif attr == DEP:
|
|
pipe = "parser"
|
|
error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr))
|
|
raise ValueError(error_msg)
|
|
matches = find_matches(&self.patterns[0], self.patterns.size(), doclike, length,
|
|
extensions=self._extensions, predicates=self._extra_predicates, with_alignments=with_alignments)
|
|
final_matches = []
|
|
pairs_by_id = {}
|
|
# For each key, either add all matches, or only the filtered,
|
|
# non-overlapping ones this `match` can be either (start, end) or
|
|
# (start, end, alignments) depending on `with_alignments=` option.
|
|
for key, *match in matches:
|
|
span_filter = self._filter.get(key)
|
|
if span_filter is not None:
|
|
pairs = pairs_by_id.get(key, [])
|
|
pairs.append(match)
|
|
pairs_by_id[key] = pairs
|
|
else:
|
|
final_matches.append((key, *match))
|
|
matched = <char*>tmp_pool.alloc(length, sizeof(char))
|
|
empty = <char*>tmp_pool.alloc(length, sizeof(char))
|
|
for key, pairs in pairs_by_id.items():
|
|
memset(matched, 0, length * sizeof(matched[0]))
|
|
span_filter = self._filter.get(key)
|
|
if span_filter == "FIRST":
|
|
sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start
|
|
elif span_filter == "LONGEST":
|
|
sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length
|
|
else:
|
|
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=span_filter))
|
|
for match in sorted_pairs:
|
|
start, end = match[:2]
|
|
assert 0 <= start < end # Defend against segfaults
|
|
span_len = end-start
|
|
# If no tokens in the span have matched
|
|
if memcmp(&matched[start], &empty[start], span_len * sizeof(matched[0])) == 0:
|
|
final_matches.append((key, *match))
|
|
# Mark tokens that have matched
|
|
memset(&matched[start], 1, span_len * sizeof(matched[0]))
|
|
if as_spans:
|
|
final_results = []
|
|
for key, start, end, *_ in final_matches:
|
|
if isinstance(doclike, Span):
|
|
start += doclike.start
|
|
end += doclike.start
|
|
final_results.append(Span(doc, start, end, label=key))
|
|
elif with_alignments:
|
|
# convert alignments List[Dict[str, int]] --> List[int]
|
|
# when multiple alignment (belongs to the same length) is found,
|
|
# keeps the alignment that has largest token_idx
|
|
final_results = []
|
|
for key, start, end, alignments in final_matches:
|
|
sorted_alignments = sorted(alignments, key=lambda x: (x['length'], x['token_idx']), reverse=False)
|
|
alignments = [0] * (end-start)
|
|
for align in sorted_alignments:
|
|
if align['length'] >= end-start:
|
|
continue
|
|
# Since alignments are sorted in order of (length, token_idx)
|
|
# this overwrites smaller token_idx when they have same length.
|
|
alignments[align['length']] = align['token_idx']
|
|
final_results.append((key, start, end, alignments))
|
|
final_matches = final_results # for callbacks
|
|
else:
|
|
final_results = final_matches
|
|
# perform the callbacks on the filtered set of results
|
|
for i, (key, *_) in enumerate(final_matches):
|
|
on_match = self._callbacks.get(key, None)
|
|
if on_match is not None:
|
|
on_match(self, doc, i, final_matches)
|
|
return final_results
|
|
|
|
def _normalize_key(self, key):
|
|
if isinstance(key, basestring):
|
|
return self.vocab.strings.add(key)
|
|
else:
|
|
return key
|
|
|
|
|
|
def unpickle_matcher(vocab, patterns, callbacks):
|
|
matcher = Matcher(vocab)
|
|
for key, pattern in patterns.items():
|
|
callback = callbacks.get(key, None)
|
|
matcher.add(key, pattern, on_match=callback)
|
|
return matcher
|
|
|
|
|
|
cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, extensions=None, predicates=tuple(), bint with_alignments=0):
|
|
"""Find matches in a doc, with a compiled array of patterns. Matches are
|
|
returned as a list of (id, start, end) tuples or (id, start, end, alignments) tuples (if with_alignments != 0)
|
|
|
|
To augment the compiled patterns, we optionally also take two Python lists.
|
|
|
|
The "predicates" list contains functions that take a Python list and return a
|
|
boolean value. It's mostly used for regular expressions.
|
|
|
|
The "extensions" list contains functions that take a Python list and return
|
|
an attr ID. It's mostly used for extension attributes.
|
|
"""
|
|
cdef vector[PatternStateC] states
|
|
cdef vector[MatchC] matches
|
|
cdef vector[vector[MatchAlignmentC]] align_states
|
|
cdef vector[vector[MatchAlignmentC]] align_matches
|
|
cdef PatternStateC state
|
|
cdef int i, j, nr_extra_attr
|
|
cdef Pool mem = Pool()
|
|
output = []
|
|
if length == 0:
|
|
# avoid any processing or mem alloc if the document is empty
|
|
return output
|
|
if len(predicates) > 0:
|
|
predicate_cache = <int8_t*>mem.alloc(length * len(predicates), sizeof(int8_t))
|
|
if extensions is not None and len(extensions) >= 1:
|
|
nr_extra_attr = max(extensions.values()) + 1
|
|
extra_attr_values = <attr_t*>mem.alloc(length * nr_extra_attr, sizeof(attr_t))
|
|
else:
|
|
nr_extra_attr = 0
|
|
extra_attr_values = <attr_t*>mem.alloc(length, sizeof(attr_t))
|
|
for i, token in enumerate(doclike):
|
|
for name, index in extensions.items():
|
|
value = token._.get(name)
|
|
if isinstance(value, basestring):
|
|
value = token.vocab.strings[value]
|
|
extra_attr_values[i * nr_extra_attr + index] = value
|
|
# Main loop
|
|
cdef int nr_predicate = len(predicates)
|
|
for i in range(length):
|
|
for j in range(n):
|
|
states.push_back(PatternStateC(patterns[j], i, 0))
|
|
if with_alignments != 0:
|
|
align_states.resize(states.size())
|
|
transition_states(states, matches, align_states, align_matches, predicate_cache,
|
|
doclike[i], extra_attr_values, predicates, with_alignments)
|
|
extra_attr_values += nr_extra_attr
|
|
predicate_cache += len(predicates)
|
|
# Handle matches that end in 0-width patterns
|
|
finish_states(matches, states, align_matches, align_states, with_alignments)
|
|
seen = set()
|
|
for i in range(matches.size()):
|
|
match = (
|
|
matches[i].pattern_id,
|
|
matches[i].start,
|
|
matches[i].start+matches[i].length
|
|
)
|
|
# We need to deduplicate, because we could otherwise arrive at the same
|
|
# match through two paths, e.g. .?.? matching 'a'. Are we matching the
|
|
# first .?, or the second .? -- it doesn't matter, it's just one match.
|
|
# Skip 0-length matches. (TODO: fix algorithm)
|
|
if match not in seen and matches[i].length > 0:
|
|
if with_alignments != 0:
|
|
# since the length of align_matches equals to that of match, we can share same 'i'
|
|
output.append(match + (align_matches[i],))
|
|
else:
|
|
output.append(match)
|
|
seen.add(match)
|
|
return output
|
|
|
|
|
|
cdef void transition_states(vector[PatternStateC]& states, vector[MatchC]& matches,
|
|
vector[vector[MatchAlignmentC]]& align_states, vector[vector[MatchAlignmentC]]& align_matches,
|
|
int8_t* cached_py_predicates,
|
|
Token token, const attr_t* extra_attrs, py_predicates, bint with_alignments) except *:
|
|
cdef int q = 0
|
|
cdef vector[PatternStateC] new_states
|
|
cdef vector[vector[MatchAlignmentC]] align_new_states
|
|
cdef int nr_predicate = len(py_predicates)
|
|
for i in range(states.size()):
|
|
if states[i].pattern.nr_py >= 1:
|
|
update_predicate_cache(cached_py_predicates,
|
|
states[i].pattern, token, py_predicates)
|
|
action = get_action(states[i], token.c, extra_attrs,
|
|
cached_py_predicates)
|
|
if action == REJECT:
|
|
continue
|
|
# Keep only a subset of states (the active ones). Index q is the
|
|
# states which are still alive. If we reject a state, we overwrite
|
|
# it in the states list, because q doesn't advance.
|
|
state = states[i]
|
|
states[q] = state
|
|
# Separate from states, performance is guaranteed for users who only need basic options (without alignments).
|
|
# `align_states` always corresponds to `states` 1:1.
|
|
if with_alignments != 0:
|
|
align_state = align_states[i]
|
|
align_states[q] = align_state
|
|
while action in (RETRY, RETRY_ADVANCE, RETRY_EXTEND):
|
|
# Update alignment before the transition of current state
|
|
# 'MatchAlignmentC' maps 'original token index of current pattern' to 'current matching length'
|
|
if with_alignments != 0:
|
|
align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length))
|
|
if action == RETRY_EXTEND:
|
|
# This handles the 'extend'
|
|
new_states.push_back(
|
|
PatternStateC(pattern=states[q].pattern, start=state.start,
|
|
length=state.length+1))
|
|
if with_alignments != 0:
|
|
align_new_states.push_back(align_states[q])
|
|
if action == RETRY_ADVANCE:
|
|
# This handles the 'advance'
|
|
new_states.push_back(
|
|
PatternStateC(pattern=states[q].pattern+1, start=state.start,
|
|
length=state.length+1))
|
|
if with_alignments != 0:
|
|
align_new_states.push_back(align_states[q])
|
|
states[q].pattern += 1
|
|
if states[q].pattern.nr_py != 0:
|
|
update_predicate_cache(cached_py_predicates,
|
|
states[q].pattern, token, py_predicates)
|
|
action = get_action(states[q], token.c, extra_attrs,
|
|
cached_py_predicates)
|
|
# Update alignment before the transition of current state
|
|
if with_alignments != 0:
|
|
align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length))
|
|
if action == REJECT:
|
|
pass
|
|
elif action == ADVANCE:
|
|
states[q].pattern += 1
|
|
states[q].length += 1
|
|
q += 1
|
|
else:
|
|
ent_id = get_ent_id(state.pattern)
|
|
if action == MATCH:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length+1))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
elif action == MATCH_DOUBLE:
|
|
# push match without last token if length > 0
|
|
if state.length > 0:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length))
|
|
# MATCH_DOUBLE emits matches twice,
|
|
# add one more to align_matches in order to keep 1:1 relationship
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
# push match with last token
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length+1))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
elif action == MATCH_REJECT:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
elif action == MATCH_EXTEND:
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start,
|
|
length=state.length))
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_states[q])
|
|
states[q].length += 1
|
|
q += 1
|
|
states.resize(q)
|
|
for i in range(new_states.size()):
|
|
states.push_back(new_states[i])
|
|
# `align_states` always corresponds to `states` 1:1
|
|
if with_alignments != 0:
|
|
align_states.resize(q)
|
|
for i in range(align_new_states.size()):
|
|
align_states.push_back(align_new_states[i])
|
|
|
|
|
|
cdef int update_predicate_cache(int8_t* cache,
|
|
const TokenPatternC* pattern, Token token, predicates) except -1:
|
|
# If the state references any extra predicates, check whether they match.
|
|
# These are cached, so that we don't call these potentially expensive
|
|
# Python functions more than we need to.
|
|
for i in range(pattern.nr_py):
|
|
index = pattern.py_predicates[i]
|
|
if cache[index] == 0:
|
|
predicate = predicates[index]
|
|
result = predicate(token)
|
|
if result is True:
|
|
cache[index] = 1
|
|
elif result is False:
|
|
cache[index] = -1
|
|
elif result is None:
|
|
pass
|
|
else:
|
|
raise ValueError(Errors.E125.format(value=result))
|
|
|
|
|
|
cdef void finish_states(vector[MatchC]& matches, vector[PatternStateC]& states,
|
|
vector[vector[MatchAlignmentC]]& align_matches,
|
|
vector[vector[MatchAlignmentC]]& align_states,
|
|
bint with_alignments) except *:
|
|
"""Handle states that end in zero-width patterns."""
|
|
cdef PatternStateC state
|
|
cdef vector[MatchAlignmentC] align_state
|
|
for i in range(states.size()):
|
|
state = states[i]
|
|
if with_alignments != 0:
|
|
align_state = align_states[i]
|
|
while get_quantifier(state) in (ZERO_PLUS, ZERO_ONE):
|
|
# Update alignment before the transition of current state
|
|
if with_alignments != 0:
|
|
align_state.push_back(MatchAlignmentC(state.pattern.token_idx, state.length))
|
|
is_final = get_is_final(state)
|
|
if is_final:
|
|
ent_id = get_ent_id(state.pattern)
|
|
# `align_matches` always corresponds to `matches` 1:1
|
|
if with_alignments != 0:
|
|
align_matches.push_back(align_state)
|
|
matches.push_back(
|
|
MatchC(pattern_id=ent_id, start=state.start, length=state.length))
|
|
break
|
|
else:
|
|
state.pattern += 1
|
|
|
|
|
|
cdef action_t get_action(PatternStateC state,
|
|
const TokenC* token, const attr_t* extra_attrs,
|
|
const int8_t* predicate_matches) nogil:
|
|
"""We need to consider:
|
|
a) Does the token match the specification? [Yes, No]
|
|
b) What's the quantifier? [1, 0+, ?]
|
|
c) Is this the last specification? [final, non-final]
|
|
|
|
We can transition in the following ways:
|
|
a) Do we emit a match?
|
|
b) Do we add a state with (next state, next token)?
|
|
c) Do we add a state with (next state, same token)?
|
|
d) Do we add a state with (same state, next token)?
|
|
|
|
We'll code the actions as boolean strings, so 0000 means no to all 4,
|
|
1000 means match but no states added, etc.
|
|
|
|
1:
|
|
Yes, final:
|
|
1000
|
|
Yes, non-final:
|
|
0100
|
|
No, final:
|
|
0000
|
|
No, non-final
|
|
0000
|
|
0+:
|
|
Yes, final:
|
|
1001
|
|
Yes, non-final:
|
|
0011
|
|
No, final:
|
|
1000 (note: Don't include last token!)
|
|
No, non-final:
|
|
0010
|
|
?:
|
|
Yes, final:
|
|
1000
|
|
Yes, non-final:
|
|
0100
|
|
No, final:
|
|
1000 (note: Don't include last token!)
|
|
No, non-final:
|
|
0010
|
|
|
|
Possible combinations: 1000, 0100, 0000, 1001, 0110, 0011, 0010,
|
|
|
|
We'll name the bits "match", "advance", "retry", "extend"
|
|
REJECT = 0000
|
|
MATCH = 1000
|
|
ADVANCE = 0100
|
|
RETRY = 0010
|
|
MATCH_EXTEND = 1001
|
|
RETRY_ADVANCE = 0110
|
|
RETRY_EXTEND = 0011
|
|
MATCH_REJECT = 2000 # Match, but don't include last token
|
|
MATCH_DOUBLE = 3000 # Match both with and without last token
|
|
|
|
Problem: If a quantifier is matching, we're adding a lot of open partials
|
|
"""
|
|
cdef int8_t is_match
|
|
is_match = get_is_match(state, token, extra_attrs, predicate_matches)
|
|
quantifier = get_quantifier(state)
|
|
is_final = get_is_final(state)
|
|
if quantifier == ZERO:
|
|
is_match = not is_match
|
|
quantifier = ONE
|
|
if quantifier == ONE:
|
|
if is_match and is_final:
|
|
# Yes, final: 1000
|
|
return MATCH
|
|
elif is_match and not is_final:
|
|
# Yes, non-final: 0100
|
|
return ADVANCE
|
|
elif not is_match and is_final:
|
|
# No, final: 0000
|
|
return REJECT
|
|
else:
|
|
return REJECT
|
|
elif quantifier == ZERO_PLUS:
|
|
if is_match and is_final:
|
|
# Yes, final: 1001
|
|
return MATCH_EXTEND
|
|
elif is_match and not is_final:
|
|
# Yes, non-final: 0011
|
|
return RETRY_EXTEND
|
|
elif not is_match and is_final:
|
|
# No, final 2000 (note: Don't include last token!)
|
|
return MATCH_REJECT
|
|
else:
|
|
# No, non-final 0010
|
|
return RETRY
|
|
elif quantifier == ZERO_ONE:
|
|
if is_match and is_final:
|
|
# Yes, final: 3000
|
|
# To cater for a pattern ending in "?", we need to add
|
|
# a match both with and without the last token
|
|
return MATCH_DOUBLE
|
|
elif is_match and not is_final:
|
|
# Yes, non-final: 0110
|
|
# We need both branches here, consider a pair like:
|
|
# pattern: .?b string: b
|
|
# If we 'ADVANCE' on the .?, we miss the match.
|
|
return RETRY_ADVANCE
|
|
elif not is_match and is_final:
|
|
# No, final 2000 (note: Don't include last token!)
|
|
return MATCH_REJECT
|
|
else:
|
|
# No, non-final 0010
|
|
return RETRY
|
|
|
|
|
|
cdef int8_t get_is_match(PatternStateC state,
|
|
const TokenC* token, const attr_t* extra_attrs,
|
|
const int8_t* predicate_matches) nogil:
|
|
for i in range(state.pattern.nr_py):
|
|
if predicate_matches[state.pattern.py_predicates[i]] == -1:
|
|
return 0
|
|
spec = state.pattern
|
|
if spec.nr_attr > 0:
|
|
for attr in spec.attrs[:spec.nr_attr]:
|
|
if get_token_attr_for_matcher(token, attr.attr) != attr.value:
|
|
return 0
|
|
for i in range(spec.nr_extra_attr):
|
|
if spec.extra_attrs[i].value != extra_attrs[spec.extra_attrs[i].index]:
|
|
return 0
|
|
return True
|
|
|
|
|
|
cdef int8_t get_is_final(PatternStateC state) nogil:
|
|
if state.pattern[1].quantifier == FINAL_ID:
|
|
id_attr = state.pattern[1].attrs[0]
|
|
if id_attr.attr != ID:
|
|
with gil:
|
|
raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr))
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
|
|
cdef int8_t get_quantifier(PatternStateC state) nogil:
|
|
return state.pattern.quantifier
|
|
|
|
|
|
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs) except NULL:
|
|
pattern = <TokenPatternC*>mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC))
|
|
cdef int i, index
|
|
for i, (quantifier, spec, extensions, predicates, token_idx) in enumerate(token_specs):
|
|
pattern[i].quantifier = quantifier
|
|
# Ensure attrs refers to a null pointer if nr_attr == 0
|
|
if len(spec) > 0:
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(len(spec), sizeof(AttrValueC))
|
|
pattern[i].nr_attr = len(spec)
|
|
for j, (attr, value) in enumerate(spec):
|
|
pattern[i].attrs[j].attr = attr
|
|
pattern[i].attrs[j].value = value
|
|
if len(extensions) > 0:
|
|
pattern[i].extra_attrs = <IndexValueC*>mem.alloc(len(extensions), sizeof(IndexValueC))
|
|
for j, (index, value) in enumerate(extensions):
|
|
pattern[i].extra_attrs[j].index = index
|
|
pattern[i].extra_attrs[j].value = value
|
|
pattern[i].nr_extra_attr = len(extensions)
|
|
if len(predicates) > 0:
|
|
pattern[i].py_predicates = <int32_t*>mem.alloc(len(predicates), sizeof(int32_t))
|
|
for j, index in enumerate(predicates):
|
|
pattern[i].py_predicates[j] = index
|
|
pattern[i].nr_py = len(predicates)
|
|
pattern[i].key = hash64(pattern[i].attrs, pattern[i].nr_attr * sizeof(AttrValueC), 0)
|
|
pattern[i].token_idx = token_idx
|
|
i = len(token_specs)
|
|
# Use quantifier to identify final ID pattern node (rather than previous
|
|
# uninitialized quantifier == 0/ZERO + nr_attr == 0 + non-zero-length attrs)
|
|
pattern[i].quantifier = FINAL_ID
|
|
pattern[i].attrs = <AttrValueC*>mem.alloc(1, sizeof(AttrValueC))
|
|
pattern[i].attrs[0].attr = ID
|
|
pattern[i].attrs[0].value = entity_id
|
|
pattern[i].nr_attr = 1
|
|
pattern[i].nr_extra_attr = 0
|
|
pattern[i].nr_py = 0
|
|
pattern[i].token_idx = -1
|
|
return pattern
|
|
|
|
|
|
cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
|
|
while pattern.quantifier != FINAL_ID:
|
|
pattern += 1
|
|
id_attr = pattern[0].attrs[0]
|
|
if id_attr.attr != ID:
|
|
with gil:
|
|
raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr))
|
|
return id_attr.value
|
|
|
|
|
|
def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates):
|
|
"""This function interprets the pattern, converting the various bits of
|
|
syntactic sugar before we compile it into a struct with init_pattern.
|
|
|
|
We need to split the pattern up into four parts:
|
|
* Normal attribute/value pairs, which are stored on either the token or lexeme,
|
|
can be handled directly.
|
|
* Extension attributes are handled specially, as we need to prefetch the
|
|
values from Python for the doc before we begin matching.
|
|
* Extra predicates also call Python functions, so we have to create the
|
|
functions and store them. So we store these specially as well.
|
|
* Extension attributes that have extra predicates are stored within the
|
|
extra_predicates.
|
|
* Token index that this pattern belongs to.
|
|
"""
|
|
tokens = []
|
|
string_store = vocab.strings
|
|
for token_idx, spec in enumerate(token_specs):
|
|
if not spec:
|
|
# Signifier for 'any token'
|
|
tokens.append((ONE, [(NULL_ATTR, 0)], [], [], token_idx))
|
|
continue
|
|
if not isinstance(spec, dict):
|
|
raise ValueError(Errors.E154.format())
|
|
ops = _get_operators(spec)
|
|
attr_values = _get_attr_values(spec, string_store)
|
|
extensions = _get_extensions(spec, string_store, extensions_table)
|
|
predicates = _get_extra_predicates(spec, extra_predicates, vocab)
|
|
for op in ops:
|
|
tokens.append((op, list(attr_values), list(extensions), list(predicates), token_idx))
|
|
return tokens
|
|
|
|
|
|
def _get_attr_values(spec, string_store):
|
|
attr_values = []
|
|
for attr, value in spec.items():
|
|
if isinstance(attr, basestring):
|
|
attr = attr.upper()
|
|
if attr == '_':
|
|
continue
|
|
elif attr == "OP":
|
|
continue
|
|
if attr == "TEXT":
|
|
attr = "ORTH"
|
|
if attr == "IS_SENT_START":
|
|
attr = "SENT_START"
|
|
attr = IDS.get(attr)
|
|
if isinstance(value, basestring):
|
|
value = string_store.add(value)
|
|
elif isinstance(value, bool):
|
|
value = int(value)
|
|
elif isinstance(value, int):
|
|
pass
|
|
elif isinstance(value, dict):
|
|
continue
|
|
else:
|
|
raise ValueError(Errors.E153.format(vtype=type(value).__name__))
|
|
if attr is not None:
|
|
attr_values.append((attr, value))
|
|
else:
|
|
# should be caught in validation
|
|
raise ValueError(Errors.E152.format(attr=attr))
|
|
return attr_values
|
|
|
|
|
|
# These predicate helper classes are used to match the REGEX, IN, >= etc
|
|
# extensions to the matcher introduced in #3173.
|
|
|
|
class _RegexPredicate:
|
|
operators = ("REGEX",)
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.value = re.compile(value)
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
self.key = (attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = token._.get(self.attr)
|
|
else:
|
|
value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)]
|
|
return bool(self.value.search(value))
|
|
|
|
|
|
class _SetPredicate:
|
|
operators = ("IN", "NOT_IN", "IS_SUBSET", "IS_SUPERSET", "INTERSECTS")
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.vocab = vocab
|
|
if self.attr == MORPH:
|
|
# normalize morph strings
|
|
self.value = set(self.vocab.morphology.add(v) for v in value)
|
|
else:
|
|
self.value = set(get_string_id(v) for v in value)
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
self.key = (attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = get_string_id(token._.get(self.attr))
|
|
else:
|
|
value = get_token_attr_for_matcher(token.c, self.attr)
|
|
|
|
if self.predicate in ("IS_SUBSET", "IS_SUPERSET", "INTERSECTS"):
|
|
if self.attr == MORPH:
|
|
# break up MORPH into individual Feat=Val values
|
|
value = set(get_string_id(v) for v in MorphAnalysis.from_id(self.vocab, value))
|
|
else:
|
|
# treat a single value as a list
|
|
if isinstance(value, (str, int)):
|
|
value = set([get_string_id(value)])
|
|
else:
|
|
value = set(get_string_id(v) for v in value)
|
|
if self.predicate == "IN":
|
|
return value in self.value
|
|
elif self.predicate == "NOT_IN":
|
|
return value not in self.value
|
|
elif self.predicate == "IS_SUBSET":
|
|
return value <= self.value
|
|
elif self.predicate == "IS_SUPERSET":
|
|
return value >= self.value
|
|
elif self.predicate == "INTERSECTS":
|
|
return bool(value & self.value)
|
|
|
|
def __repr__(self):
|
|
return repr(("SetPredicate", self.i, self.attr, self.value, self.predicate))
|
|
|
|
|
|
class _ComparisonPredicate:
|
|
operators = ("==", "!=", ">=", "<=", ">", "<")
|
|
|
|
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None):
|
|
self.i = i
|
|
self.attr = attr
|
|
self.value = value
|
|
self.predicate = predicate
|
|
self.is_extension = is_extension
|
|
self.key = (attr, self.predicate, srsly.json_dumps(value, sort_keys=True))
|
|
if self.predicate not in self.operators:
|
|
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
|
|
|
|
def __call__(self, Token token):
|
|
if self.is_extension:
|
|
value = token._.get(self.attr)
|
|
else:
|
|
value = get_token_attr_for_matcher(token.c, self.attr)
|
|
if self.predicate == "==":
|
|
return value == self.value
|
|
if self.predicate == "!=":
|
|
return value != self.value
|
|
elif self.predicate == ">=":
|
|
return value >= self.value
|
|
elif self.predicate == "<=":
|
|
return value <= self.value
|
|
elif self.predicate == ">":
|
|
return value > self.value
|
|
elif self.predicate == "<":
|
|
return value < self.value
|
|
|
|
|
|
def _get_extra_predicates(spec, extra_predicates, vocab):
|
|
predicate_types = {
|
|
"REGEX": _RegexPredicate,
|
|
"IN": _SetPredicate,
|
|
"NOT_IN": _SetPredicate,
|
|
"IS_SUBSET": _SetPredicate,
|
|
"IS_SUPERSET": _SetPredicate,
|
|
"INTERSECTS": _SetPredicate,
|
|
"==": _ComparisonPredicate,
|
|
"!=": _ComparisonPredicate,
|
|
">=": _ComparisonPredicate,
|
|
"<=": _ComparisonPredicate,
|
|
">": _ComparisonPredicate,
|
|
"<": _ComparisonPredicate,
|
|
}
|
|
seen_predicates = {pred.key: pred.i for pred in extra_predicates}
|
|
output = []
|
|
for attr, value in spec.items():
|
|
if isinstance(attr, basestring):
|
|
if attr == "_":
|
|
output.extend(
|
|
_get_extension_extra_predicates(
|
|
value, extra_predicates, predicate_types,
|
|
seen_predicates))
|
|
continue
|
|
elif attr.upper() == "OP":
|
|
continue
|
|
if attr.upper() == "TEXT":
|
|
attr = "ORTH"
|
|
attr = IDS.get(attr.upper())
|
|
if isinstance(value, dict):
|
|
processed = False
|
|
value_with_upper_keys = {k.upper(): v for k, v in value.items()}
|
|
for type_, cls in predicate_types.items():
|
|
if type_ in value_with_upper_keys:
|
|
predicate = cls(len(extra_predicates), attr, value_with_upper_keys[type_], type_, vocab=vocab)
|
|
# Don't create a redundant predicates.
|
|
# This helps with efficiency, as we're caching the results.
|
|
if predicate.key in seen_predicates:
|
|
output.append(seen_predicates[predicate.key])
|
|
else:
|
|
extra_predicates.append(predicate)
|
|
output.append(predicate.i)
|
|
seen_predicates[predicate.key] = predicate.i
|
|
processed = True
|
|
if not processed:
|
|
warnings.warn(Warnings.W035.format(pattern=value))
|
|
return output
|
|
|
|
|
|
def _get_extension_extra_predicates(spec, extra_predicates, predicate_types,
|
|
seen_predicates):
|
|
output = []
|
|
for attr, value in spec.items():
|
|
if isinstance(value, dict):
|
|
for type_, cls in predicate_types.items():
|
|
if type_ in value:
|
|
key = (attr, type_, srsly.json_dumps(value[type_], sort_keys=True))
|
|
if key in seen_predicates:
|
|
output.append(seen_predicates[key])
|
|
else:
|
|
predicate = cls(len(extra_predicates), attr, value[type_], type_,
|
|
is_extension=True)
|
|
extra_predicates.append(predicate)
|
|
output.append(predicate.i)
|
|
seen_predicates[key] = predicate.i
|
|
return output
|
|
|
|
|
|
def _get_operators(spec):
|
|
# Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS
|
|
lookup = {"*": (ZERO_PLUS,), "+": (ONE, ZERO_PLUS),
|
|
"?": (ZERO_ONE,), "1": (ONE,), "!": (ZERO,)}
|
|
# Fix casing
|
|
spec = {key.upper(): values for key, values in spec.items()
|
|
if isinstance(key, basestring)}
|
|
if "OP" not in spec:
|
|
return (ONE,)
|
|
elif spec["OP"] in lookup:
|
|
return lookup[spec["OP"]]
|
|
else:
|
|
keys = ", ".join(lookup.keys())
|
|
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
|
|
|
|
|
|
def _get_extensions(spec, string_store, name2index):
|
|
attr_values = []
|
|
if not isinstance(spec.get("_", {}), dict):
|
|
raise ValueError(Errors.E154.format())
|
|
for name, value in spec.get("_", {}).items():
|
|
if isinstance(value, dict):
|
|
# Handle predicates (e.g. "IN", in the extra_predicates, not here.
|
|
continue
|
|
if isinstance(value, basestring):
|
|
value = string_store.add(value)
|
|
if name not in name2index:
|
|
name2index[name] = len(name2index)
|
|
attr_values.append((name2index[name], value))
|
|
return attr_values
|