mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
274 lines
12 KiB
Plaintext
274 lines
12 KiB
Plaintext
//- Docs > API > English
|
||
//- ============================================================================
|
||
|
||
+section('english')
|
||
+h2('english', 'https://github.com/' + profiles.github + '/spaCy/blob/master/spacy/language.py#L40')
|
||
| #[+label('tag') class] English(Language)
|
||
|
||
p.
|
||
The English analysis pipeline. Usually you'll load this once per process,
|
||
and pass the instance around your program.
|
||
|
||
+code('python', 'overview').
|
||
class Language:
|
||
lang = None
|
||
def __init__(self, data_dir=None, tokenizer=None, tagger=None, parser=None, entity=None, matcher=None):
|
||
return self
|
||
|
||
def __call__(self, text, tag=True, parse=True, entity=True):
|
||
return Doc()
|
||
|
||
def pipe(self, texts_iterator, batch_size=1000, n_threads=2):
|
||
yield Doc()
|
||
|
||
def end_training(self, data_dir=None):
|
||
return None
|
||
|
||
class English(Language):
|
||
lang = 'en'
|
||
|
||
class German(Language):
|
||
lang = 'de'
|
||
|
||
+section('english-init')
|
||
+h3('english-init')
|
||
| #[+label('tag') method] English.__init__
|
||
|
||
p
|
||
| Load the pipeline. Each component can be passed
|
||
| as an argument, or left as #[code None], in which case it will be loaded
|
||
| from a classmethod, named e.g. #[code default_vocab()].
|
||
|
||
+aside("Efficiency").
|
||
Loading takes 10-20 seconds, and the instance consumes 2 to 3
|
||
gigabytes of memory. Intended use is for one instance to be
|
||
created for each language per process, but you can create more
|
||
if you're doing something unusual. You may wish to make the
|
||
instance a global variable or 'singleton'.
|
||
|
||
+table(['Example', 'Description'], 'code')
|
||
+row
|
||
+cell #[code.lang-python nlp = English()]
|
||
+cell Load everything, from default package
|
||
|
||
+row
|
||
+cell #[code.lang-python nlp = English(data_dir='my_data')]
|
||
+cell Load everything, from specified dir
|
||
|
||
+row
|
||
+cell #[code.lang-python nlp = English(parser=False)]
|
||
+cell Load everything except the parser.
|
||
|
||
+row
|
||
+cell #[code.lang-python nlp = English(parser=False, tagger=False)]
|
||
+cell Load everything except the parser and tagger.
|
||
|
||
+row
|
||
+cell #[code.lang-python nlp = English(parser=MyParser())]
|
||
+cell Supply your own parser
|
||
|
||
+code('python', 'Definition').
|
||
def __init__(self, data_dir=None, tokenizer=None, tagger=None, parser=None, entity=None, matcher=None):
|
||
return self
|
||
|
||
+table(['Arg', 'Type', 'Description'], 'params')
|
||
+row
|
||
+cell data_dir
|
||
+cell str
|
||
+cell.
|
||
The data directory. If None, value is obtained via the
|
||
#[code default_data_dir()] method.
|
||
|
||
+row
|
||
+cell vocab
|
||
+cell #[code Vocab]
|
||
+cell.
|
||
The vocab object, which should be an instance of class
|
||
#[code spacy.vocab.Vocab]. If #[code None], the object is
|
||
obtained from the #[code default_vocab()] class method. The
|
||
vocab object manages all of the language specific rules and
|
||
definitions, maintains the cache of lexical types, and manages
|
||
the word vectors. Because the vocab owns this important data,
|
||
most objects hold a reference to the vocab.
|
||
|
||
+row
|
||
+cell tokenizer
|
||
+cell #[code Tokenizer]
|
||
+cell.
|
||
The tokenizer, which should be a callable that accepts a
|
||
unicode string, and returns a #[code Doc] object. If set to
|
||
#[code None], the default tokenizer is constructed from the
|
||
#[code default_tokenizer()] method.
|
||
|
||
+row
|
||
+cell tagger
|
||
+cell #[code Tagger]
|
||
+cell.
|
||
The part-of-speech tagger, which should be a callable that
|
||
accepts a #[code Doc] object, and sets the part-of-speech
|
||
tags in-place. If set to None, the default tagger is constructed
|
||
from the #[code default_tagger()] method.
|
||
|
||
+row
|
||
+cell parser
|
||
+cell #[code Parser]
|
||
+cell.
|
||
The dependency parser, which should be a callable that accepts
|
||
a #[code Doc] object, and sets the sentence boundaries,
|
||
syntactic heads and dependency labels in-place.
|
||
If set to #[code None], the default parser is
|
||
constructed from the #[code default_parser()] method. To disable
|
||
the parser and prevent it from being loaded, pass #[code parser=False].
|
||
|
||
+row
|
||
+cell entity
|
||
+cell #[code Parser]
|
||
+cell.
|
||
The named entity recognizer, which should be a callable that
|
||
accepts a #[code Doc] object, and sets the named entity annotations
|
||
in-place. If set to None, the default entity recognizer is
|
||
constructed from the #[code default_entity()] method. To disable
|
||
the entity recognizer and prevent it from being loaded, pass
|
||
#[code entity=False].
|
||
|
||
+row
|
||
+cell matcher
|
||
+cell #[code Matcher]
|
||
+cell.
|
||
The pattern matcher, which should be a callable that accepts
|
||
a #[code Doc] object, and sets named entity annotations in-place
|
||
using token-based rules. If set
|
||
to None, the default matcher is constructed from the
|
||
#[code default_matcher()] method.
|
||
|
||
+section('english-call')
|
||
+h3('english-call')
|
||
| #[+label('tag') method] English.__call__
|
||
|
||
p
|
||
| The main entry point to spaCy. Takes raw unicode text, and returns
|
||
| a #[code Doc] object, which can be iterated to access #[code Token]
|
||
| and #[code Span] objects.
|
||
|
||
+aside("Efficiency").
|
||
spaCy's algorithms are all linear-time, so you can supply
|
||
documents of arbitrary length, e.g. whole novels.
|
||
|
||
+table(['Example', 'Description'], 'code')
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(u'Some text.')]
|
||
+cell Apply the full pipeline.
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(u'Some text.', parse=False)]
|
||
+cell Applies tagger and entity, not parser
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(u'Some text.', entity=False)]
|
||
+cell Applies tagger and parser, not entity.
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(u'Some text.', tag=False)]
|
||
+cell Does not apply tagger, entity or parser
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(u'')]
|
||
+cell Zero-length tokens, not an error
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(b'Some text')]
|
||
+cell Error: need unicode
|
||
+row
|
||
+cell #[code.lang-python doc = nlp(b'Some text'.decode('utf8'))]
|
||
+cell Decode bytes into unicode first.
|
||
|
||
+code('python', 'Definition').
|
||
def __call__(self, text, tag=True, parse=True, entity=True, matcher=True):
|
||
return self
|
||
|
||
+table(['Name', 'Type', 'Description'], 'params')
|
||
+row
|
||
+cell text
|
||
+cell #[a(href=link_unicode target='_blank') unicode]
|
||
+cell.
|
||
The text to be processed. spaCy expects raw unicode text
|
||
– you don't necessarily need to, say, split it into paragraphs.
|
||
However, depending on your documents, you might be better
|
||
off applying custom pre-processing. Non-text formatting,
|
||
e.g. from HTML mark-up, should be removed before sending
|
||
the document to spaCy. If your documents have a consistent
|
||
format, you may be able to improve accuracy by pre-processing.
|
||
For instance, if the first word of your documents are always
|
||
in upper-case, it may be helpful to normalize them before
|
||
supplying them to spaCy.
|
||
|
||
+row
|
||
+cell tag
|
||
+cell #[a(href=link_bool target='_blank') bool]
|
||
+cell.
|
||
Whether to apply the part-of-speech tagger. Required for
|
||
parsing and entity recognition.
|
||
|
||
+row
|
||
+cell parse
|
||
+cell #[a(href=link_bool target='_blank') bool]
|
||
+cell.
|
||
Whether to apply the syntactic dependency parser.
|
||
|
||
+row
|
||
+cell entity
|
||
+cell #[a(href=link_bool target='_blank') bool]
|
||
+cell.
|
||
Whether to apply the named entity recognizer.
|
||
|
||
+section('english-pipe')
|
||
+h3('english-pipe')
|
||
| #[+label('tag') method] English.pipe
|
||
|
||
p
|
||
| Parse a sequence of texts into a sequence of #[code Doc] objects.
|
||
| Accepts a generator as input, and produces a generator as output.
|
||
| Internally, it accumulates a buffer of #[code batch_size]
|
||
| texts, works on them with #[code n_threads] workers in parallel,
|
||
| and then yields the #[code Doc] objects one by one.
|
||
|
||
+aside('Efficiency').
|
||
spaCy releases the global interpreter lock around the parser and
|
||
named entity recognizer, allowing shared-memory parallelism via
|
||
OpenMP. However, OpenMP is not supported on OSX — so multiple
|
||
threads will only be used on Linux and Windows.
|
||
|
||
+table(["Example", "Description"], 'usage')
|
||
+row
|
||
+cell #[a(href='https://github.com/' + profiles.github + '/spaCy/blob/master/examples/parallel_parse.py' target='_blank') parallel_parse.py]
|
||
+cell Parse comments from Reddit in parallel.
|
||
|
||
+code('python', 'Definition').
|
||
def pipe(self, texts, n_threads=2, batch_size=1000):
|
||
yield Doc()
|
||
|
||
+table(['Arg', 'Type', 'Description'], 'params')
|
||
+row
|
||
+cell texts
|
||
+cell
|
||
+cell.
|
||
A sequence of unicode objects. Usually you will want this
|
||
to be a generator, so that you don't need to have all of
|
||
your texts in memory.
|
||
|
||
+row
|
||
+cell n_threads
|
||
+cell #[a(href=link_int target='_blank') int]
|
||
+cell.
|
||
The number of worker threads to use. If -1, OpenMP will
|
||
decide how many to use at run time. Default is 2.
|
||
|
||
+row
|
||
+cell batch_size
|
||
+cell #[a(href=link_int target='_blank') int]
|
||
+cell.
|
||
The number of texts to buffer. Let's say you have a
|
||
#[code batch_size] of 1,000. The input, #[code texts], is
|
||
a generator that yields the texts one-by-one. We want to
|
||
operate on them in parallel. So, we accumulate a work queue.
|
||
Instead of taking one document from #[code texts] and
|
||
operating on it, we buffer #[code batch_size] documents,
|
||
work on them in parallel, and then yield them one-by-one.
|
||
Higher #[code batch_size] therefore often results in better
|
||
parallelism, up to a point.
|