mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* added it vocab * copied portuguese * added possessive determiner * added conjed Nps * added nmoded Nps * test misc * more examples * fixed typo * fixed parenth * fixed comma * comma fix * added syntax iters * fix some index problems * fixed index * corrected heads for test case * fixed tets case * fixed determiner gender * cleaned left over * added example with apostophe
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, Callable
 | |
| from thinc.api import Model
 | |
| 
 | |
| from .stop_words import STOP_WORDS
 | |
| from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
 | |
| from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_INFIXES
 | |
| from ...language import Language, BaseDefaults
 | |
| from .lemmatizer import ItalianLemmatizer
 | |
| from .syntax_iterators import SYNTAX_ITERATORS
 | |
| 
 | |
| 
 | |
| class ItalianDefaults(BaseDefaults):
 | |
|     tokenizer_exceptions = TOKENIZER_EXCEPTIONS
 | |
|     prefixes = TOKENIZER_PREFIXES
 | |
|     infixes = TOKENIZER_INFIXES
 | |
|     stop_words = STOP_WORDS
 | |
|     syntax_iterators = SYNTAX_ITERATORS
 | |
| 
 | |
| 
 | |
| class Italian(Language):
 | |
|     lang = "it"
 | |
|     Defaults = ItalianDefaults
 | |
| 
 | |
| 
 | |
| @Italian.factory(
 | |
|     "lemmatizer",
 | |
|     assigns=["token.lemma"],
 | |
|     default_config={
 | |
|         "model": None,
 | |
|         "mode": "pos_lookup",
 | |
|         "overwrite": False,
 | |
|         "scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
 | |
|     },
 | |
|     default_score_weights={"lemma_acc": 1.0},
 | |
| )
 | |
| def make_lemmatizer(
 | |
|     nlp: Language,
 | |
|     model: Optional[Model],
 | |
|     name: str,
 | |
|     mode: str,
 | |
|     overwrite: bool,
 | |
|     scorer: Optional[Callable],
 | |
| ):
 | |
|     return ItalianLemmatizer(
 | |
|         nlp.vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
 | |
|     )
 | |
| 
 | |
| 
 | |
| __all__ = ["Italian"]
 |