mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Add spacy.errors module * Update deprecation and user warnings * Replace errors and asserts with new error message system * Remove redundant asserts * Fix whitespace * Add messages for print/util.prints statements * Fix typo * Fix typos * Move CLI messages to spacy.cli._messages * Add decorator to display error code with message An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc. * Remove unused link in spacy.about * Update errors for invalid pipeline components * Improve error for unknown factories * Add displaCy warnings * Update formatting consistency * Move error message to spacy.errors * Update errors and check if doc returned by component is None
		
			
				
	
	
		
			109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals, division, print_function
 | 
						|
 | 
						|
import plac
 | 
						|
from timeit import default_timer as timer
 | 
						|
 | 
						|
from ._messages import Messages
 | 
						|
from ..gold import GoldCorpus
 | 
						|
from ..util import prints
 | 
						|
from .. import util
 | 
						|
from .. import displacy
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("model name or path", "positional", None, str),
 | 
						|
    data_path=("location of JSON-formatted evaluation data", "positional",
 | 
						|
               None, str),
 | 
						|
    gold_preproc=("use gold preprocessing", "flag", "G", bool),
 | 
						|
    gpu_id=("use GPU", "option", "g", int),
 | 
						|
    displacy_path=("directory to output rendered parses as HTML", "option",
 | 
						|
                   "dp", str),
 | 
						|
    displacy_limit=("limit of parses to render as HTML", "option", "dl", int))
 | 
						|
def evaluate(model, data_path, gpu_id=-1, gold_preproc=False, displacy_path=None,
 | 
						|
             displacy_limit=25):
 | 
						|
    """
 | 
						|
    Evaluate a model. To render a sample of parses in a HTML file, set an
 | 
						|
    output directory as the displacy_path argument.
 | 
						|
    """
 | 
						|
 | 
						|
    util.fix_random_seed()
 | 
						|
    if gpu_id >= 0:
 | 
						|
        util.use_gpu(gpu_id)
 | 
						|
    util.set_env_log(False)
 | 
						|
    data_path = util.ensure_path(data_path)
 | 
						|
    displacy_path = util.ensure_path(displacy_path)
 | 
						|
    if not data_path.exists():
 | 
						|
        prints(data_path, title=Messages.M034, exits=1)
 | 
						|
    if displacy_path and not displacy_path.exists():
 | 
						|
        prints(displacy_path, title=Messages.M035, exits=1)
 | 
						|
    corpus = GoldCorpus(data_path, data_path)
 | 
						|
    nlp = util.load_model(model)
 | 
						|
    dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
 | 
						|
    begin = timer()
 | 
						|
    scorer = nlp.evaluate(dev_docs, verbose=False)
 | 
						|
    end = timer()
 | 
						|
    nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
 | 
						|
    print_results(scorer, time=end - begin, words=nwords,
 | 
						|
                  wps=nwords / (end - begin))
 | 
						|
    if displacy_path:
 | 
						|
        docs, golds = zip(*dev_docs)
 | 
						|
        render_deps = 'parser' in nlp.meta.get('pipeline', [])
 | 
						|
        render_ents = 'ner' in nlp.meta.get('pipeline', [])
 | 
						|
        render_parses(docs, displacy_path, model_name=model,
 | 
						|
                      limit=displacy_limit, deps=render_deps, ents=render_ents)
 | 
						|
        prints(displacy_path, title=Messages.M036.format(n=displacy_limit))
 | 
						|
 | 
						|
 | 
						|
def render_parses(docs, output_path, model_name='', limit=250, deps=True,
 | 
						|
                  ents=True):
 | 
						|
    docs[0].user_data['title'] = model_name
 | 
						|
    if ents:
 | 
						|
        with (output_path / 'entities.html').open('w') as file_:
 | 
						|
            html = displacy.render(docs[:limit], style='ent', page=True)
 | 
						|
            file_.write(html)
 | 
						|
    if deps:
 | 
						|
        with (output_path / 'parses.html').open('w') as file_:
 | 
						|
            html = displacy.render(docs[:limit], style='dep', page=True,
 | 
						|
                                   options={'compact': True})
 | 
						|
            file_.write(html)
 | 
						|
 | 
						|
 | 
						|
def print_progress(itn, losses, dev_scores, wps=0.0):
 | 
						|
    scores = {}
 | 
						|
    for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
 | 
						|
                'ents_p', 'ents_r', 'ents_f', 'wps']:
 | 
						|
        scores[col] = 0.0
 | 
						|
    scores['dep_loss'] = losses.get('parser', 0.0)
 | 
						|
    scores['ner_loss'] = losses.get('ner', 0.0)
 | 
						|
    scores['tag_loss'] = losses.get('tagger', 0.0)
 | 
						|
    scores.update(dev_scores)
 | 
						|
    scores['wps'] = wps
 | 
						|
    tpl = '\t'.join((
 | 
						|
        '{:d}',
 | 
						|
        '{dep_loss:.3f}',
 | 
						|
        '{ner_loss:.3f}',
 | 
						|
        '{uas:.3f}',
 | 
						|
        '{ents_p:.3f}',
 | 
						|
        '{ents_r:.3f}',
 | 
						|
        '{ents_f:.3f}',
 | 
						|
        '{tags_acc:.3f}',
 | 
						|
        '{token_acc:.3f}',
 | 
						|
        '{wps:.1f}'))
 | 
						|
    print(tpl.format(itn, **scores))
 | 
						|
 | 
						|
 | 
						|
def print_results(scorer, time, words, wps):
 | 
						|
    results = {
 | 
						|
        'Time': '%.2f s' % time,
 | 
						|
        'Words': words,
 | 
						|
        'Words/s': '%.0f' % wps,
 | 
						|
        'TOK': '%.2f' % scorer.token_acc,
 | 
						|
        'POS': '%.2f' % scorer.tags_acc,
 | 
						|
        'UAS': '%.2f' % scorer.uas,
 | 
						|
        'LAS': '%.2f' % scorer.las,
 | 
						|
        'NER P': '%.2f' % scorer.ents_p,
 | 
						|
        'NER R': '%.2f' % scorer.ents_r,
 | 
						|
        'NER F': '%.2f' % scorer.ents_f}
 | 
						|
    util.print_table(results, title="Results")
 |