spaCy/spacy/scorer.py
Ines Montani 3141e04822
💫 New system for error messages and warnings (#2163)
* Add spacy.errors module

* Update deprecation and user warnings

* Replace errors and asserts with new error message system

* Remove redundant asserts

* Fix whitespace

* Add messages for print/util.prints statements

* Fix typo

* Fix typos

* Move CLI messages to spacy.cli._messages

* Add decorator to display error code with message

An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc.

* Remove unused link in spacy.about

* Update errors for invalid pipeline components

* Improve error for unknown factories

* Add displaCy warnings

* Update formatting consistency

* Move error message to spacy.errors

* Update errors and check if doc returned by component is None
2018-04-03 15:50:31 +02:00

141 lines
4.4 KiB
Python

# coding: utf8
from __future__ import division, print_function, unicode_literals
from .gold import tags_to_entities
from .errors import Errors
class PRFScore(object):
"""
A precision / recall / F score
"""
def __init__(self):
self.tp = 0
self.fp = 0
self.fn = 0
def score_set(self, cand, gold):
self.tp += len(cand.intersection(gold))
self.fp += len(cand - gold)
self.fn += len(gold - cand)
@property
def precision(self):
return self.tp / (self.tp + self.fp + 1e-100)
@property
def recall(self):
return self.tp / (self.tp + self.fn + 1e-100)
@property
def fscore(self):
p = self.precision
r = self.recall
return 2 * ((p * r) / (p + r + 1e-100))
class Scorer(object):
def __init__(self, eval_punct=False):
self.tokens = PRFScore()
self.sbd = PRFScore()
self.unlabelled = PRFScore()
self.labelled = PRFScore()
self.tags = PRFScore()
self.ner = PRFScore()
self.eval_punct = eval_punct
@property
def tags_acc(self):
return self.tags.fscore * 100
@property
def token_acc(self):
return self.tokens.precision * 100
@property
def uas(self):
return self.unlabelled.fscore * 100
@property
def las(self):
return self.labelled.fscore * 100
@property
def ents_p(self):
return self.ner.precision * 100
@property
def ents_r(self):
return self.ner.recall * 100
@property
def ents_f(self):
return self.ner.fscore * 100
@property
def scores(self):
return {
'uas': self.uas,
'las': self.las,
'ents_p': self.ents_p,
'ents_r': self.ents_r,
'ents_f': self.ents_f,
'tags_acc': self.tags_acc,
'token_acc': self.token_acc
}
def score(self, tokens, gold, verbose=False, punct_labels=('p', 'punct')):
if len(tokens) != len(gold):
raise ValueError(Errors.E078.format(words_doc=len(tokens), words_gold=len(gold)))
gold_deps = set()
gold_tags = set()
gold_ents = set(tags_to_entities([annot[-1]
for annot in gold.orig_annot]))
for id_, word, tag, head, dep, ner in gold.orig_annot:
gold_tags.add((id_, tag))
if dep not in (None, "") and dep.lower() not in punct_labels:
gold_deps.add((id_, head, dep.lower()))
cand_deps = set()
cand_tags = set()
for token in tokens:
if token.orth_.isspace():
continue
gold_i = gold.cand_to_gold[token.i]
if gold_i is None:
if token.dep_.lower() not in punct_labels:
self.tokens.fp += 1
else:
self.tokens.tp += 1
cand_tags.add((gold_i, token.tag_))
if token.dep_.lower() not in punct_labels and token.orth_.strip():
gold_head = gold.cand_to_gold[token.head.i]
# None is indistinct, so we can't just add it to the set
# Multiple (None, None) deps are possible
if gold_i is None or gold_head is None:
self.unlabelled.fp += 1
self.labelled.fp += 1
else:
cand_deps.add((gold_i, gold_head, token.dep_.lower()))
if '-' not in [token[-1] for token in gold.orig_annot]:
cand_ents = set()
for ent in tokens.ents:
first = gold.cand_to_gold[ent.start]
last = gold.cand_to_gold[ent.end-1]
if first is None or last is None:
self.ner.fp += 1
else:
cand_ents.add((ent.label_, first, last))
self.ner.score_set(cand_ents, gold_ents)
self.tags.score_set(cand_tags, gold_tags)
self.labelled.score_set(cand_deps, gold_deps)
self.unlabelled.score_set(
set(item[:2] for item in cand_deps),
set(item[:2] for item in gold_deps),
)
if verbose:
gold_words = [item[1] for item in gold.orig_annot]
for w_id, h_id, dep in (cand_deps - gold_deps):
print('F', gold_words[w_id], dep, gold_words[h_id])
for w_id, h_id, dep in (gold_deps - cand_deps):
print('M', gold_words[w_id], dep, gold_words[h_id])