mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-14 05:37:03 +03:00
03fefa37e2
* Add overwrite settings for more components For pipeline components where it's relevant and not already implemented, add an explicit `overwrite` setting that controls whether `set_annotations` overwrites existing annotation. For the `morphologizer`, add an additional setting `extend`, which controls whether the existing features are preserved. * +overwrite, +extend: overwrite values of existing features, add any new features * +overwrite, -extend: overwrite completely, removing any existing features * -overwrite, +extend: keep values of existing features, add any new features * -overwrite, -extend: do not modify the existing value if set In all cases an unset value will be set by `set_annotations`. Preserve current overwrite defaults: * True: morphologizer, entity linker * False: tagger, sentencizer, senter * Add backwards compat overwrite settings * Put empty line back Removed by accident in last commit * Set backwards-compatible defaults in __init__ Because the `TrainablePipe` serialization methods update `cfg`, there's no straightforward way to detect whether models serialized with a previous version are missing the overwrite settings. It would be possible in the sentencizer due to its separate serialization methods, however to keep the changes parallel, this also sets the default in `__init__`. * Remove traces Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
322 lines
12 KiB
Cython
322 lines
12 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from typing import Callable, Optional
|
|
import numpy
|
|
import srsly
|
|
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
|
from thinc.types import Floats2d
|
|
import warnings
|
|
from itertools import islice
|
|
|
|
from ..tokens.doc cimport Doc
|
|
from ..morphology cimport Morphology
|
|
from ..vocab cimport Vocab
|
|
|
|
from .trainable_pipe import TrainablePipe
|
|
from .pipe import deserialize_config
|
|
from ..language import Language
|
|
from ..attrs import POS, ID
|
|
from ..parts_of_speech import X
|
|
from ..errors import Errors, Warnings
|
|
from ..scorer import Scorer
|
|
from ..training import validate_examples, validate_get_examples
|
|
from ..util import registry
|
|
from .. import util
|
|
|
|
# See #9050
|
|
BACKWARD_OVERWRITE = False
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v2"
|
|
pretrained_vectors = null
|
|
width = 96
|
|
depth = 4
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
subword_features = true
|
|
"""
|
|
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"tagger",
|
|
assigns=["token.tag"],
|
|
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}},
|
|
default_score_weights={"tag_acc": 1.0},
|
|
)
|
|
def make_tagger(
|
|
nlp: Language,
|
|
name: str,
|
|
model: Model,
|
|
overwrite: bool,
|
|
scorer: Optional[Callable],
|
|
):
|
|
"""Construct a part-of-speech tagger component.
|
|
|
|
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
|
the tag probabilities. The output vectors should match the number of tags
|
|
in size, and be normalized as probabilities (all scores between 0 and 1,
|
|
with the rows summing to 1).
|
|
"""
|
|
return Tagger(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
|
|
|
|
|
|
def tagger_score(examples, **kwargs):
|
|
return Scorer.score_token_attr(examples, "tag", **kwargs)
|
|
|
|
|
|
@registry.scorers("spacy.tagger_scorer.v1")
|
|
def make_tagger_scorer():
|
|
return tagger_score
|
|
|
|
|
|
class Tagger(TrainablePipe):
|
|
"""Pipeline component for part-of-speech tagging.
|
|
|
|
DOCS: https://spacy.io/api/tagger
|
|
"""
|
|
def __init__(
|
|
self,
|
|
vocab,
|
|
model,
|
|
name="tagger",
|
|
*,
|
|
overwrite=BACKWARD_OVERWRITE,
|
|
scorer=tagger_score,
|
|
):
|
|
"""Initialize a part-of-speech tagger.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_token_attr for the attribute "tag".
|
|
|
|
DOCS: https://spacy.io/api/tagger#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._rehearsal_model = None
|
|
cfg = {"labels": [], "overwrite": overwrite}
|
|
self.cfg = dict(sorted(cfg.items()))
|
|
self.scorer = scorer
|
|
|
|
@property
|
|
def labels(self):
|
|
"""The labels currently added to the component. Note that even for a
|
|
blank component, this will always include the built-in coarse-grained
|
|
part-of-speech tags by default.
|
|
|
|
RETURNS (Tuple[str]): The labels.
|
|
|
|
DOCS: https://spacy.io/api/tagger#labels
|
|
"""
|
|
return tuple(self.cfg["labels"])
|
|
|
|
@property
|
|
def label_data(self):
|
|
"""Data about the labels currently added to the component."""
|
|
return tuple(self.cfg["labels"])
|
|
|
|
def predict(self, docs):
|
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
docs (Iterable[Doc]): The documents to predict.
|
|
RETURNS: The models prediction for each document.
|
|
|
|
DOCS: https://spacy.io/api/tagger#predict
|
|
"""
|
|
if not any(len(doc) for doc in docs):
|
|
# Handle cases where there are no tokens in any docs.
|
|
n_labels = len(self.labels)
|
|
guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
|
|
assert len(guesses) == len(docs)
|
|
return guesses
|
|
scores = self.model.predict(docs)
|
|
assert len(scores) == len(docs), (len(scores), len(docs))
|
|
guesses = self._scores2guesses(scores)
|
|
assert len(guesses) == len(docs)
|
|
return guesses
|
|
|
|
def _scores2guesses(self, scores):
|
|
guesses = []
|
|
for doc_scores in scores:
|
|
doc_guesses = doc_scores.argmax(axis=1)
|
|
if not isinstance(doc_guesses, numpy.ndarray):
|
|
doc_guesses = doc_guesses.get()
|
|
guesses.append(doc_guesses)
|
|
return guesses
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
"""Modify a batch of documents, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
batch_tag_ids: The IDs to set, produced by Tagger.predict.
|
|
|
|
DOCS: https://spacy.io/api/tagger#set_annotations
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef Vocab vocab = self.vocab
|
|
cdef bint overwrite = self.cfg["overwrite"]
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, "get"):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
if doc.c[j].tag == 0 or overwrite:
|
|
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
|
|
|
|
def update(self, examples, *, drop=0., sgd=None, losses=None):
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model. Delegates to predict and get_loss.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/tagger#update
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "Tagger.update")
|
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
|
|
for sc in tag_scores:
|
|
if self.model.ops.xp.isnan(sc.sum()):
|
|
raise ValueError(Errors.E940)
|
|
loss, d_tag_scores = self.get_loss(examples, tag_scores)
|
|
bp_tag_scores(d_tag_scores)
|
|
if sgd not in (None, False):
|
|
self.finish_update(sgd)
|
|
|
|
losses[self.name] += loss
|
|
return losses
|
|
|
|
def rehearse(self, examples, *, drop=0., sgd=None, losses=None):
|
|
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
|
|
teach the current model to make predictions similar to an initial model,
|
|
to try to address the "catastrophic forgetting" problem. This feature is
|
|
experimental.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/tagger#rehearse
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "Tagger.rehearse")
|
|
docs = [eg.predicted for eg in examples]
|
|
if self._rehearsal_model is None:
|
|
return losses
|
|
if not any(len(doc) for doc in docs):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
guesses, backprop = self.model.begin_update(docs)
|
|
target = self._rehearsal_model(examples)
|
|
gradient = guesses - target
|
|
backprop(gradient)
|
|
self.finish_update(sgd)
|
|
losses[self.name] += (gradient**2).sum()
|
|
return losses
|
|
|
|
def get_loss(self, examples, scores):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/tagger#get_loss
|
|
"""
|
|
validate_examples(examples, "Tagger.get_loss")
|
|
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False, neg_prefix="!")
|
|
# Convert empty tag "" to missing value None so that both misaligned
|
|
# tokens and tokens with missing annotation have the default missing
|
|
# value None.
|
|
truths = []
|
|
for eg in examples:
|
|
eg_truths = [tag if tag is not "" else None for tag in eg.get_aligned("TAG", as_string=True)]
|
|
truths.append(eg_truths)
|
|
d_scores, loss = loss_func(scores, truths)
|
|
if self.model.ops.xp.isnan(loss):
|
|
raise ValueError(Errors.E910.format(name=self.name))
|
|
return float(loss), d_scores
|
|
|
|
def initialize(self, get_examples, *, nlp=None, labels=None):
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects..
|
|
nlp (Language): The current nlp object the component is part of.
|
|
labels: The labels to add to the component, typically generated by the
|
|
`init labels` command. If no labels are provided, the get_examples
|
|
callback is used to extract the labels from the data.
|
|
|
|
DOCS: https://spacy.io/api/tagger#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "Tagger.initialize")
|
|
util.check_lexeme_norms(self.vocab, "tagger")
|
|
if labels is not None:
|
|
for tag in labels:
|
|
self.add_label(tag)
|
|
else:
|
|
tags = set()
|
|
for example in get_examples():
|
|
for token in example.y:
|
|
if token.tag_:
|
|
tags.add(token.tag_)
|
|
for tag in sorted(tags):
|
|
self.add_label(tag)
|
|
doc_sample = []
|
|
label_sample = []
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.x)
|
|
gold_tags = example.get_aligned("TAG", as_string=True)
|
|
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
|
|
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
|
|
self._require_labels()
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=doc_sample, Y=label_sample)
|
|
|
|
def add_label(self, label):
|
|
"""Add a new label to the pipe.
|
|
|
|
label (str): The label to add.
|
|
RETURNS (int): 0 if label is already present, otherwise 1.
|
|
|
|
DOCS: https://spacy.io/api/tagger#add_label
|
|
"""
|
|
if not isinstance(label, str):
|
|
raise ValueError(Errors.E187)
|
|
if label in self.labels:
|
|
return 0
|
|
self._allow_extra_label()
|
|
self.cfg["labels"].append(label)
|
|
self.vocab.strings.add(label)
|
|
return 1
|