mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			925 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			925 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import random
 | |
| 
 | |
| import numpy.random
 | |
| import pytest
 | |
| from numpy.testing import assert_almost_equal
 | |
| from thinc.api import Config, compounding, fix_random_seed, get_current_ops
 | |
| from wasabi import msg
 | |
| 
 | |
| import spacy
 | |
| from spacy import util
 | |
| from spacy.cli.evaluate import print_prf_per_type, print_textcats_auc_per_cat
 | |
| from spacy.lang.en import English
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import TextCategorizer
 | |
| from spacy.pipeline.textcat import (
 | |
|     single_label_bow_config,
 | |
|     single_label_cnn_config,
 | |
|     single_label_default_config,
 | |
| )
 | |
| from spacy.pipeline.textcat_multilabel import (
 | |
|     multi_label_bow_config,
 | |
|     multi_label_cnn_config,
 | |
|     multi_label_default_config,
 | |
| )
 | |
| from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | |
| from spacy.scorer import Scorer
 | |
| from spacy.tokens import Doc, DocBin
 | |
| from spacy.training import Example
 | |
| from spacy.training.initialize import init_nlp
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| TRAIN_DATA_SINGLE_LABEL = [
 | |
|     ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
 | |
|     ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
 | |
| ]
 | |
| 
 | |
| TRAIN_DATA_MULTI_LABEL = [
 | |
|     ("I'm angry and confused", {"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0}}),
 | |
|     ("I'm confused but happy", {"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0}}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def make_get_examples_single_label(nlp):
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
| 
 | |
|     def get_examples():
 | |
|         return train_examples
 | |
| 
 | |
|     return get_examples
 | |
| 
 | |
| 
 | |
| def make_get_examples_multi_label(nlp):
 | |
|     train_examples = []
 | |
|     for t in TRAIN_DATA_MULTI_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
 | |
| 
 | |
|     def get_examples():
 | |
|         return train_examples
 | |
| 
 | |
|     return get_examples
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3611)
 | |
| def test_issue3611():
 | |
|     """Test whether adding n-grams in the textcat works even when n > token length of some docs"""
 | |
|     unique_classes = ["offensive", "inoffensive"]
 | |
|     x_train = [
 | |
|         "This is an offensive text",
 | |
|         "This is the second offensive text",
 | |
|         "inoff",
 | |
|     ]
 | |
|     y_train = ["offensive", "offensive", "inoffensive"]
 | |
|     nlp = spacy.blank("en")
 | |
|     # preparing the data
 | |
|     train_data = []
 | |
|     for text, train_instance in zip(x_train, y_train):
 | |
|         cat_dict = {label: label == train_instance for label in unique_classes}
 | |
|         train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
 | |
|     # add a text categorizer component
 | |
|     model = {
 | |
|         "@architectures": "spacy.TextCatBOW.v1",
 | |
|         "exclusive_classes": True,
 | |
|         "ngram_size": 2,
 | |
|         "no_output_layer": False,
 | |
|     }
 | |
|     textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
 | |
|     for label in unique_classes:
 | |
|         textcat.add_label(label)
 | |
|     # training the network
 | |
|     with nlp.select_pipes(enable="textcat"):
 | |
|         optimizer = nlp.initialize()
 | |
|         for i in range(3):
 | |
|             losses = {}
 | |
|             batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
 | |
| 
 | |
|             for batch in batches:
 | |
|                 nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4030)
 | |
| def test_issue4030():
 | |
|     """Test whether textcat works fine with empty doc"""
 | |
|     unique_classes = ["offensive", "inoffensive"]
 | |
|     x_train = [
 | |
|         "This is an offensive text",
 | |
|         "This is the second offensive text",
 | |
|         "inoff",
 | |
|     ]
 | |
|     y_train = ["offensive", "offensive", "inoffensive"]
 | |
|     nlp = spacy.blank("en")
 | |
|     # preparing the data
 | |
|     train_data = []
 | |
|     for text, train_instance in zip(x_train, y_train):
 | |
|         cat_dict = {label: label == train_instance for label in unique_classes}
 | |
|         train_data.append(Example.from_dict(nlp.make_doc(text), {"cats": cat_dict}))
 | |
|     # add a text categorizer component
 | |
|     model = {
 | |
|         "@architectures": "spacy.TextCatBOW.v1",
 | |
|         "exclusive_classes": True,
 | |
|         "ngram_size": 2,
 | |
|         "no_output_layer": False,
 | |
|     }
 | |
|     textcat = nlp.add_pipe("textcat", config={"model": model}, last=True)
 | |
|     for label in unique_classes:
 | |
|         textcat.add_label(label)
 | |
|     # training the network
 | |
|     with nlp.select_pipes(enable="textcat"):
 | |
|         optimizer = nlp.initialize()
 | |
|         for i in range(3):
 | |
|             losses = {}
 | |
|             batches = util.minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
 | |
| 
 | |
|             for batch in batches:
 | |
|                 nlp.update(examples=batch, sgd=optimizer, drop=0.1, losses=losses)
 | |
|     # processing of an empty doc should result in 0.0 for all categories
 | |
|     doc = nlp("")
 | |
|     assert doc.cats["offensive"] == 0.0
 | |
|     assert doc.cats["inoffensive"] == 0.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "textcat_config",
 | |
|     [
 | |
|         single_label_default_config,
 | |
|         single_label_bow_config,
 | |
|         single_label_cnn_config,
 | |
|         multi_label_default_config,
 | |
|         multi_label_bow_config,
 | |
|         multi_label_cnn_config,
 | |
|     ],
 | |
| )
 | |
| @pytest.mark.issue(5551)
 | |
| def test_issue5551(textcat_config):
 | |
|     """Test that after fixing the random seed, the results of the pipeline are truly identical"""
 | |
|     component = "textcat"
 | |
| 
 | |
|     pipe_cfg = Config().from_str(textcat_config)
 | |
|     results = []
 | |
|     for i in range(3):
 | |
|         fix_random_seed(0)
 | |
|         nlp = English()
 | |
|         text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g."
 | |
|         annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}}
 | |
|         pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
 | |
|         for label in set(annots["cats"]):
 | |
|             pipe.add_label(label)
 | |
|         # Train
 | |
|         nlp.initialize()
 | |
|         doc = nlp.make_doc(text)
 | |
|         nlp.update([Example.from_dict(doc, annots)])
 | |
|         # Store the result of each iteration
 | |
|         result = pipe.model.predict([doc])
 | |
|         results.append(result[0])
 | |
|     # All results should be the same because of the fixed seed
 | |
|     assert len(results) == 3
 | |
|     ops = get_current_ops()
 | |
|     assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[1]), decimal=5)
 | |
|     assert_almost_equal(ops.to_numpy(results[0]), ops.to_numpy(results[2]), decimal=5)
 | |
| 
 | |
| 
 | |
| CONFIG_ISSUE_6908 = """
 | |
| [paths]
 | |
| train = "TRAIN_PLACEHOLDER"
 | |
| raw = null
 | |
| init_tok2vec = null
 | |
| vectors = null
 | |
| 
 | |
| [system]
 | |
| seed = 0
 | |
| gpu_allocator = null
 | |
| 
 | |
| [nlp]
 | |
| lang = "en"
 | |
| pipeline = ["textcat"]
 | |
| tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
 | |
| disabled = []
 | |
| before_creation = null
 | |
| after_creation = null
 | |
| after_pipeline_creation = null
 | |
| batch_size = 1000
 | |
| 
 | |
| [components]
 | |
| 
 | |
| [components.textcat]
 | |
| factory = "TEXTCAT_PLACEHOLDER"
 | |
| 
 | |
| [corpora]
 | |
| 
 | |
| [corpora.train]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths:train}
 | |
| 
 | |
| [corpora.dev]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths:train}
 | |
| 
 | |
| 
 | |
| [training]
 | |
| train_corpus = "corpora.train"
 | |
| dev_corpus = "corpora.dev"
 | |
| seed = ${system.seed}
 | |
| gpu_allocator = ${system.gpu_allocator}
 | |
| frozen_components = []
 | |
| before_to_disk = null
 | |
| 
 | |
| [pretraining]
 | |
| 
 | |
| [initialize]
 | |
| vectors = ${paths.vectors}
 | |
| init_tok2vec = ${paths.init_tok2vec}
 | |
| vocab_data = null
 | |
| lookups = null
 | |
| before_init = null
 | |
| after_init = null
 | |
| 
 | |
| [initialize.components]
 | |
| 
 | |
| [initialize.components.textcat]
 | |
| labels = ['label1', 'label2']
 | |
| 
 | |
| [initialize.tokenizer]
 | |
| """
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "component_name",
 | |
|     ["textcat", "textcat_multilabel"],
 | |
| )
 | |
| @pytest.mark.issue(6908)
 | |
| def test_issue6908(component_name):
 | |
|     """Test intializing textcat with labels in a list"""
 | |
| 
 | |
|     def create_data(out_file):
 | |
|         nlp = spacy.blank("en")
 | |
|         doc = nlp.make_doc("Some text")
 | |
|         doc.cats = {"label1": 0, "label2": 1}
 | |
|         out_data = DocBin(docs=[doc]).to_bytes()
 | |
|         with out_file.open("wb") as file_:
 | |
|             file_.write(out_data)
 | |
| 
 | |
|     with make_tempdir() as tmp_path:
 | |
|         train_path = tmp_path / "train.spacy"
 | |
|         create_data(train_path)
 | |
|         config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
 | |
|         config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
 | |
|         config = util.load_config_from_str(config_str)
 | |
|         init_nlp(config)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(7019)
 | |
| def test_issue7019():
 | |
|     scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
 | |
|     print_textcats_auc_per_cat(msg, scores)
 | |
|     scores = {
 | |
|         "LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
 | |
|         "LABEL_B": {"p": None, "r": None, "f": None},
 | |
|     }
 | |
|     print_prf_per_type(msg, scores, name="foo", type="bar")
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(9904)
 | |
| def test_issue9904():
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_single_label(nlp)
 | |
|     nlp.initialize(get_examples)
 | |
| 
 | |
|     examples = get_examples()
 | |
|     scores = textcat.predict([eg.predicted for eg in examples])
 | |
| 
 | |
|     loss = textcat.get_loss(examples, scores)[0]
 | |
|     loss_double_bs = textcat.get_loss(examples * 2, scores.repeat(2, axis=0))[0]
 | |
|     assert loss == pytest.approx(loss_double_bs)
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_simple_train():
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     textcat.add_label("answer")
 | |
|     nlp.initialize()
 | |
|     for i in range(5):
 | |
|         for text, answer in [
 | |
|             ("aaaa", 1.0),
 | |
|             ("bbbb", 0),
 | |
|             ("aa", 1.0),
 | |
|             ("bbbbbbbbb", 0.0),
 | |
|             ("aaaaaa", 1),
 | |
|         ]:
 | |
|             nlp.update((text, {"cats": {"answer": answer}}))
 | |
|     doc = nlp("aaa")
 | |
|     assert "answer" in doc.cats
 | |
|     assert doc.cats["answer"] >= 0.5
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="Test is flakey when run with others")
 | |
| def test_textcat_learns_multilabel():
 | |
|     random.seed(5)
 | |
|     numpy.random.seed(5)
 | |
|     docs = []
 | |
|     nlp = Language()
 | |
|     letters = ["a", "b", "c"]
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             cats = {letter: float(w2 == letter) for letter in letters}
 | |
|             docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | |
|     random.shuffle(docs)
 | |
|     textcat = TextCategorizer(nlp.vocab, width=8)
 | |
|     for letter in letters:
 | |
|         textcat.add_label(letter)
 | |
|     optimizer = textcat.initialize(lambda: [])
 | |
|     for i in range(30):
 | |
|         losses = {}
 | |
|         examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
 | |
|         textcat.update(examples, sgd=optimizer, losses=losses)
 | |
|         random.shuffle(docs)
 | |
|     for w1 in letters:
 | |
|         for w2 in letters:
 | |
|             doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | |
|             truth = {letter: w2 == letter for letter in letters}
 | |
|             textcat(doc)
 | |
|             for cat, score in doc.cats.items():
 | |
|                 if not truth[cat]:
 | |
|                     assert score < 0.5
 | |
|                 else:
 | |
|                     assert score > 0.5
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
 | |
| def test_label_types(name):
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe(name)
 | |
|     textcat.add_label("answer")
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.add_label(9)
 | |
|     # textcat requires at least two labels
 | |
|     if name == "textcat":
 | |
|         with pytest.raises(ValueError):
 | |
|             nlp.initialize()
 | |
|     else:
 | |
|         nlp.initialize()
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "name,get_examples",
 | |
|     [
 | |
|         ("textcat", make_get_examples_single_label),
 | |
|         ("textcat_multilabel", make_get_examples_multi_label),
 | |
|     ],
 | |
| )
 | |
| def test_invalid_label_value(name, get_examples):
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe(name)
 | |
|     example_getter = get_examples(nlp)
 | |
| 
 | |
|     def invalid_examples():
 | |
|         # make one example with an invalid score
 | |
|         examples = example_getter()
 | |
|         ref = examples[0].reference
 | |
|         key = list(ref.cats.keys())[0]
 | |
|         ref.cats[key] = 2.0
 | |
|         return examples
 | |
| 
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.initialize(get_examples=invalid_examples)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("name", ["textcat", "textcat_multilabel"])
 | |
| def test_no_label(name):
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(name)
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.initialize()
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "name,get_examples",
 | |
|     [
 | |
|         ("textcat", make_get_examples_single_label),
 | |
|         ("textcat_multilabel", make_get_examples_multi_label),
 | |
|     ],
 | |
| )
 | |
| def test_implicit_label(name, get_examples):
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe(name)
 | |
|     nlp.initialize(get_examples=get_examples(nlp))
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.slow
 | |
| @pytest.mark.parametrize(
 | |
|     "name,textcat_config",
 | |
|     [
 | |
|         # BOW
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | |
|         # ENSEMBLE V1
 | |
|         ("textcat", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | |
|         # ENSEMBLE V2
 | |
|         ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}}),
 | |
|         # CNN
 | |
|         ("textcat", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_no_resize(name, textcat_config):
 | |
|     """The old textcat architectures weren't resizable"""
 | |
|     nlp = Language()
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
|     textcat.add_label("POSITIVE")
 | |
|     textcat.add_label("NEGATIVE")
 | |
|     nlp.initialize()
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
|     # this throws an error because the textcat can't be resized after initialization
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.add_label("NEUTRAL")
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,textcat_config",
 | |
|     [
 | |
|         # BOW
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | |
|         # CNN
 | |
|         ("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_resize(name, textcat_config):
 | |
|     """The new textcat architectures are resizable"""
 | |
|     nlp = Language()
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
|     textcat.add_label("POSITIVE")
 | |
|     textcat.add_label("NEGATIVE")
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
|     nlp.initialize()
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
|     textcat.add_label("NEUTRAL")
 | |
|     assert textcat.model.maybe_get_dim("nO") in [3, None]
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.parametrize(
 | |
|     "name,textcat_config",
 | |
|     [
 | |
|         # BOW
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
 | |
|         # CNN
 | |
|         ("textcat", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_resize_same_results(name, textcat_config):
 | |
|     # Ensure that the resized textcat classifiers still produce the same results for old labels
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert textcat.model.maybe_get_dim("nO") in [2, None]
 | |
| 
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # test the trained model before resizing
 | |
|     test_text = "I am happy."
 | |
|     doc = nlp(test_text)
 | |
|     assert len(doc.cats) == 2
 | |
|     pos_pred = doc.cats["POSITIVE"]
 | |
|     neg_pred = doc.cats["NEGATIVE"]
 | |
| 
 | |
|     # test the trained model again after resizing
 | |
|     textcat.add_label("NEUTRAL")
 | |
|     doc = nlp(test_text)
 | |
|     assert len(doc.cats) == 3
 | |
|     assert doc.cats["POSITIVE"] == pos_pred
 | |
|     assert doc.cats["NEGATIVE"] == neg_pred
 | |
|     assert doc.cats["NEUTRAL"] <= 1
 | |
| 
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # test the trained model again after training further with new label
 | |
|     doc = nlp(test_text)
 | |
|     assert len(doc.cats) == 3
 | |
|     assert doc.cats["POSITIVE"] != pos_pred
 | |
|     assert doc.cats["NEGATIVE"] != neg_pred
 | |
|     for cat in doc.cats:
 | |
|         assert doc.cats[cat] <= 1
 | |
| 
 | |
| 
 | |
| def test_error_with_multi_labels():
 | |
|     nlp = Language()
 | |
|     nlp.add_pipe("textcat")
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_MULTI_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "name,get_examples, train_data",
 | |
|     [
 | |
|         ("textcat", make_get_examples_single_label, TRAIN_DATA_SINGLE_LABEL),
 | |
|         ("textcat_multilabel", make_get_examples_multi_label, TRAIN_DATA_MULTI_LABEL),
 | |
|     ],
 | |
| )
 | |
| def test_initialize_examples(name, get_examples, train_data):
 | |
|     nlp = Language()
 | |
|     textcat = nlp.add_pipe(name)
 | |
|     for text, annotations in train_data:
 | |
|         for label, value in annotations.get("cats").items():
 | |
|             textcat.add_label(label)
 | |
|     # you shouldn't really call this more than once, but for testing it should be fine
 | |
|     nlp.initialize()
 | |
|     nlp.initialize(get_examples=get_examples(nlp))
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=lambda: None)
 | |
|     with pytest.raises(TypeError):
 | |
|         nlp.initialize(get_examples=get_examples())
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert textcat.model.get_dim("nO") == 2
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["textcat"] < 0.01
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I am happy."
 | |
|     doc = nlp(test_text)
 | |
|     cats = doc.cats
 | |
|     assert cats["POSITIVE"] > 0.9
 | |
|     assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         cats2 = doc2.cats
 | |
|         assert cats2["POSITIVE"] > 0.9
 | |
|         assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.001)
 | |
| 
 | |
|     # Test scoring
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert scores["cats_micro_f"] == 1.0
 | |
|     assert scores["cats_macro_f"] == 1.0
 | |
|     assert scores["cats_macro_auc"] == 1.0
 | |
|     assert scores["cats_score"] == 1.0
 | |
|     assert "cats_score_desc" in scores
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | |
|     batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
 | |
|     for cats_1, cats_2 in zip(batch_cats_1, batch_cats_2):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
|     for cats_1, cats_2 in zip(batch_cats_1, no_batch_cats):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO_multi():
 | |
|     # Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
 | |
|     fix_random_seed(0)
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat_multilabel")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_MULTI_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     assert textcat.model.get_dim("nO") == 3
 | |
| 
 | |
|     for i in range(100):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["textcat_multilabel"] < 0.01
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I am confused but happy."
 | |
|     doc = nlp(test_text)
 | |
|     cats = doc.cats
 | |
|     assert cats["HAPPY"] > 0.9
 | |
|     assert cats["CONFUSED"] > 0.9
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         cats2 = doc2.cats
 | |
|         assert cats2["HAPPY"] > 0.9
 | |
|         assert cats2["CONFUSED"] > 0.9
 | |
| 
 | |
|     # Test scoring
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert scores["cats_micro_f"] == 1.0
 | |
|     assert scores["cats_macro_f"] == 1.0
 | |
|     assert "cats_score_desc" in scores
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
 | |
|     batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]]
 | |
|     for cats_1, cats_2 in zip(batch_deps_1, batch_deps_2):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
|     for cats_1, cats_2 in zip(batch_deps_1, no_batch_deps):
 | |
|         for cat in cats_1:
 | |
|             assert_almost_equal(cats_1[cat], cats_2[cat], decimal=5)
 | |
| 
 | |
| 
 | |
| # fmt: off
 | |
| @pytest.mark.slow
 | |
| @pytest.mark.parametrize(
 | |
|     "name,train_data,textcat_config",
 | |
|     [
 | |
|         # BOW V1
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
 | |
|         # ENSEMBLE V1
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
 | |
|         # CNN V1
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|         # BOW V2
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
 | |
|         # ENSEMBLE V2
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
 | |
|         # CNN V2
 | |
|         ("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
 | |
|         ("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
 | |
|     ],
 | |
| )
 | |
| # fmt: on
 | |
| def test_textcat_configs(name, train_data, textcat_config):
 | |
|     pipe_config = {"model": textcat_config}
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe(name, config=pipe_config)
 | |
|     train_examples = []
 | |
|     for text, annotations in train_data:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for label, value in annotations.get("cats").items():
 | |
|             textcat.add_label(label)
 | |
|     optimizer = nlp.initialize()
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
| 
 | |
| def test_positive_class():
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_single_label(nlp)
 | |
|     textcat.initialize(get_examples, labels=["POS", "NEG"], positive_label="POS")
 | |
|     assert textcat.labels == ("POS", "NEG")
 | |
|     assert textcat.cfg["positive_label"] == "POS"
 | |
| 
 | |
|     textcat_multilabel = nlp.add_pipe("textcat_multilabel")
 | |
|     get_examples = make_get_examples_multi_label(nlp)
 | |
|     with pytest.raises(TypeError):
 | |
|         textcat_multilabel.initialize(
 | |
|             get_examples, labels=["POS", "NEG"], positive_label="POS"
 | |
|         )
 | |
|     textcat_multilabel.initialize(get_examples, labels=["FICTION", "DRAMA"])
 | |
|     assert textcat_multilabel.labels == ("FICTION", "DRAMA")
 | |
|     assert "positive_label" not in textcat_multilabel.cfg
 | |
| 
 | |
| 
 | |
| def test_positive_class_not_present():
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_single_label(nlp)
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.initialize(get_examples, labels=["SOME", "THING"], positive_label="POS")
 | |
| 
 | |
| 
 | |
| def test_positive_class_not_binary():
 | |
|     nlp = English()
 | |
|     textcat = nlp.add_pipe("textcat")
 | |
|     get_examples = make_get_examples_multi_label(nlp)
 | |
|     with pytest.raises(ValueError):
 | |
|         textcat.initialize(
 | |
|             get_examples, labels=["SOME", "THING", "POS"], positive_label="POS"
 | |
|         )
 | |
| 
 | |
| 
 | |
| def test_textcat_evaluation():
 | |
|     train_examples = []
 | |
|     nlp = English()
 | |
|     ref1 = nlp("one")
 | |
|     ref1.cats = {"winter": 1.0, "summer": 1.0, "spring": 1.0, "autumn": 1.0}
 | |
|     pred1 = nlp("one")
 | |
|     pred1.cats = {"winter": 1.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | |
|     train_examples.append(Example(pred1, ref1))
 | |
| 
 | |
|     ref2 = nlp("two")
 | |
|     ref2.cats = {"winter": 0.0, "summer": 0.0, "spring": 1.0, "autumn": 1.0}
 | |
|     pred2 = nlp("two")
 | |
|     pred2.cats = {"winter": 1.0, "summer": 0.0, "spring": 0.0, "autumn": 1.0}
 | |
|     train_examples.append(Example(pred2, ref2))
 | |
| 
 | |
|     scores = Scorer().score_cats(
 | |
|         train_examples, "cats", labels=["winter", "summer", "spring", "autumn"]
 | |
|     )
 | |
|     assert scores["cats_f_per_type"]["winter"]["p"] == 1 / 2
 | |
|     assert scores["cats_f_per_type"]["winter"]["r"] == 1 / 1
 | |
|     assert scores["cats_f_per_type"]["summer"]["p"] == 0
 | |
|     assert scores["cats_f_per_type"]["summer"]["r"] == 0 / 1
 | |
|     assert scores["cats_f_per_type"]["spring"]["p"] == 1 / 1
 | |
|     assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 2
 | |
|     assert scores["cats_f_per_type"]["autumn"]["p"] == 2 / 2
 | |
|     assert scores["cats_f_per_type"]["autumn"]["r"] == 2 / 2
 | |
| 
 | |
|     assert scores["cats_micro_p"] == 4 / 5
 | |
|     assert scores["cats_micro_r"] == 4 / 6
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "multi_label,spring_p",
 | |
|     [(True, 1 / 1), (False, 1 / 2)],
 | |
| )
 | |
| def test_textcat_eval_missing(multi_label: bool, spring_p: float):
 | |
|     """
 | |
|     multi-label: the missing 'spring' in gold_doc_2 doesn't incur a penalty
 | |
|     exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0"""
 | |
|     train_examples = []
 | |
|     nlp = English()
 | |
| 
 | |
|     ref1 = nlp("one")
 | |
|     ref1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | |
|     pred1 = nlp("one")
 | |
|     pred1.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | |
|     train_examples.append(Example(ref1, pred1))
 | |
| 
 | |
|     ref2 = nlp("two")
 | |
|     # reference 'spring' is missing, pred 'spring' is 1
 | |
|     ref2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
 | |
|     pred2 = nlp("two")
 | |
|     pred2.cats = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | |
|     train_examples.append(Example(pred2, ref2))
 | |
| 
 | |
|     scores = Scorer().score_cats(
 | |
|         train_examples,
 | |
|         "cats",
 | |
|         labels=["winter", "summer", "spring", "autumn"],
 | |
|         multi_label=multi_label,
 | |
|     )
 | |
|     assert scores["cats_f_per_type"]["spring"]["p"] == spring_p
 | |
|     assert scores["cats_f_per_type"]["spring"]["r"] == 1 / 1
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "multi_label,expected_loss",
 | |
|     [(True, 0), (False, 0.125)],
 | |
| )
 | |
| def test_textcat_loss(multi_label: bool, expected_loss: float):
 | |
|     """
 | |
|     multi-label: the missing 'spring' in gold_doc_2 doesn't incur an increase in loss
 | |
|     exclusive labels: the missing 'spring' in gold_doc_2 is interpreted as 0.0 and adds to the loss"""
 | |
|     train_examples = []
 | |
|     nlp = English()
 | |
| 
 | |
|     doc1 = nlp("one")
 | |
|     cats1 = {"winter": 0.0, "summer": 0.0, "autumn": 0.0, "spring": 1.0}
 | |
|     train_examples.append(Example.from_dict(doc1, {"cats": cats1}))
 | |
| 
 | |
|     doc2 = nlp("two")
 | |
|     cats2 = {"winter": 0.0, "summer": 0.0, "autumn": 1.0}
 | |
|     train_examples.append(Example.from_dict(doc2, {"cats": cats2}))
 | |
| 
 | |
|     if multi_label:
 | |
|         textcat = nlp.add_pipe("textcat_multilabel")
 | |
|     else:
 | |
|         textcat = nlp.add_pipe("textcat")
 | |
|     assert isinstance(textcat, TextCategorizer)
 | |
|     textcat.initialize(lambda: train_examples)
 | |
|     scores = textcat.model.ops.asarray(
 | |
|         [[0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype="f"  # type: ignore
 | |
|     )
 | |
|     loss, d_scores = textcat.get_loss(train_examples, scores)
 | |
|     assert loss == expected_loss
 | |
| 
 | |
| 
 | |
| def test_textcat_multilabel_threshold():
 | |
|     # Ensure the scorer can be called with a different threshold
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("textcat_multilabel")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     # score the model (it's not actually trained but that doesn't matter)
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert 0 <= scores["cats_score"] <= 1
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
 | |
|     macro_f = scores["cats_score"]
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | |
| 
 | |
|     scores = nlp.evaluate(
 | |
|         train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"}
 | |
|     )
 | |
|     pos_f = scores["cats_score"]
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | |
|     assert pos_f >= macro_f
 | |
| 
 | |
| 
 | |
| def test_textcat_multi_threshold():
 | |
|     # Ensure the scorer can be called with a different threshold
 | |
|     nlp = English()
 | |
|     nlp.add_pipe("textcat_multilabel")
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     # score the model (it's not actually trained but that doesn't matter)
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert 0 <= scores["cats_score"] <= 1
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
 | |
| 
 | |
|     scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
 | |
|     assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "component_name,scorer",
 | |
|     [
 | |
|         ("textcat", "spacy.textcat_scorer.v1"),
 | |
|         ("textcat_multilabel", "spacy.textcat_multilabel_scorer.v1"),
 | |
|     ],
 | |
| )
 | |
| def test_textcat_legacy_scorers(component_name, scorer):
 | |
|     """Check that legacy scorers are registered and produce the expected score
 | |
|     keys."""
 | |
|     nlp = English()
 | |
|     nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}})
 | |
| 
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA_SINGLE_LABEL:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|     nlp.initialize(get_examples=lambda: train_examples)
 | |
| 
 | |
|     # score the model (it's not actually trained but that doesn't matter)
 | |
|     scores = nlp.evaluate(train_examples)
 | |
|     assert 0 <= scores["cats_score"] <= 1
 |