mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			429 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			429 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Optional, Dict, Any, Tuple, Union, Callable, List
 | 
						|
import srsly
 | 
						|
import tqdm
 | 
						|
from pathlib import Path
 | 
						|
from wasabi import msg
 | 
						|
import thinc
 | 
						|
import thinc.schedules
 | 
						|
from thinc.api import use_pytorch_for_gpu_memory, require_gpu, fix_random_seed
 | 
						|
from thinc.api import Config, Optimizer
 | 
						|
import random
 | 
						|
import typer
 | 
						|
import logging
 | 
						|
 | 
						|
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
 | 
						|
from ._util import import_code, get_sourced_components
 | 
						|
from ..language import Language
 | 
						|
from .. import util
 | 
						|
from ..gold.example import Example
 | 
						|
from ..errors import Errors
 | 
						|
 | 
						|
 | 
						|
@app.command(
 | 
						|
    "train", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
 | 
						|
)
 | 
						|
def train_cli(
 | 
						|
    # fmt: off
 | 
						|
    ctx: typer.Context,  # This is only used to read additional arguments
 | 
						|
    config_path: Path = Arg(..., help="Path to config file", exists=True),
 | 
						|
    output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"),
 | 
						|
    code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
						|
    verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
 | 
						|
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | 
						|
    resume: bool = Opt(False, "--resume", "-R", help="Resume training"),
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Train or update a spaCy model. Requires data in spaCy's binary format. To
 | 
						|
    convert data from other formats, use the `spacy convert` command. The
 | 
						|
    config file includes all settings and hyperparameters used during traing.
 | 
						|
    To override settings in the config, e.g. settings that point to local
 | 
						|
    paths or that you want to experiment with, you can override them as
 | 
						|
    command line options. For instance, --training.batch_size 128 overrides
 | 
						|
    the value of "batch_size" in the block "[training]". The --code argument
 | 
						|
    lets you pass in a Python file that's imported before training. It can be
 | 
						|
    used to register custom functions and architectures that can then be
 | 
						|
    referenced in the config.
 | 
						|
    """
 | 
						|
    util.logger.setLevel(logging.DEBUG if verbose else logging.ERROR)
 | 
						|
    verify_cli_args(config_path, output_path)
 | 
						|
    overrides = parse_config_overrides(ctx.args)
 | 
						|
    import_code(code_path)
 | 
						|
    train(
 | 
						|
        config_path,
 | 
						|
        output_path=output_path,
 | 
						|
        config_overrides=overrides,
 | 
						|
        use_gpu=use_gpu,
 | 
						|
        resume_training=resume,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def train(
 | 
						|
    config_path: Path,
 | 
						|
    output_path: Optional[Path] = None,
 | 
						|
    config_overrides: Dict[str, Any] = {},
 | 
						|
    use_gpu: int = -1,
 | 
						|
    resume_training: bool = False,
 | 
						|
) -> None:
 | 
						|
    if use_gpu >= 0:
 | 
						|
        msg.info(f"Using GPU: {use_gpu}")
 | 
						|
        require_gpu(use_gpu)
 | 
						|
    else:
 | 
						|
        msg.info("Using CPU")
 | 
						|
    msg.info(f"Loading config and nlp from: {config_path}")
 | 
						|
    with show_validation_error(config_path):
 | 
						|
        config = util.load_config(
 | 
						|
            config_path, overrides=config_overrides, interpolate=True
 | 
						|
        )
 | 
						|
    if config.get("training", {}).get("seed") is not None:
 | 
						|
        fix_random_seed(config["training"]["seed"])
 | 
						|
    # Use original config here before it's resolved to functions
 | 
						|
    sourced_components = get_sourced_components(config)
 | 
						|
    with show_validation_error(config_path):
 | 
						|
        nlp, config = util.load_model_from_config(config)
 | 
						|
    if config["training"]["vectors"] is not None:
 | 
						|
        util.load_vectors_into_model(nlp, config["training"]["vectors"])
 | 
						|
    verify_config(nlp)
 | 
						|
    raw_text, tag_map, morph_rules, weights_data = load_from_paths(config)
 | 
						|
    if config.get("system", {}).get("use_pytorch_for_gpu_memory"):
 | 
						|
        # It feels kind of weird to not have a default for this.
 | 
						|
        use_pytorch_for_gpu_memory()
 | 
						|
    T_cfg = config["training"]
 | 
						|
    optimizer = T_cfg["optimizer"]
 | 
						|
    train_corpus = T_cfg["train_corpus"]
 | 
						|
    dev_corpus = T_cfg["dev_corpus"]
 | 
						|
    batcher = T_cfg["batcher"]
 | 
						|
    train_logger = T_cfg["logger"]
 | 
						|
    # Components that shouldn't be updated during training
 | 
						|
    frozen_components = T_cfg["frozen_components"]
 | 
						|
    # Sourced components that require resume_training
 | 
						|
    resume_components = [p for p in sourced_components if p not in frozen_components]
 | 
						|
    msg.info(f"Pipeline: {nlp.pipe_names}")
 | 
						|
    if resume_components:
 | 
						|
        with nlp.select_pipes(enable=resume_components):
 | 
						|
            msg.info(f"Resuming training for: {resume_components}")
 | 
						|
            nlp.resume_training(sgd=optimizer)
 | 
						|
    with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
 | 
						|
        nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
 | 
						|
 | 
						|
    if tag_map:
 | 
						|
        # Replace tag map with provided mapping
 | 
						|
        nlp.vocab.morphology.load_tag_map(tag_map)
 | 
						|
    if morph_rules:
 | 
						|
        # Load morph rules
 | 
						|
        nlp.vocab.morphology.load_morph_exceptions(morph_rules)
 | 
						|
 | 
						|
    # Load a pretrained tok2vec model - cf. CLI command 'pretrain'
 | 
						|
    if weights_data is not None:
 | 
						|
        tok2vec_path = config["pretraining"].get("tok2vec_model", None)
 | 
						|
        if tok2vec_path is None:
 | 
						|
            msg.fail(
 | 
						|
                f"To use a pretrained tok2vec model, the config needs to specify which "
 | 
						|
                f"tok2vec layer to load in the setting [pretraining.tok2vec_model].",
 | 
						|
                exits=1,
 | 
						|
            )
 | 
						|
        tok2vec = config
 | 
						|
        for subpath in tok2vec_path.split("."):
 | 
						|
            tok2vec = tok2vec.get(subpath)
 | 
						|
        if not tok2vec:
 | 
						|
            err = f"Could not locate the tok2vec model at {tok2vec_path}"
 | 
						|
            msg.fail(err, exits=1)
 | 
						|
        tok2vec.from_bytes(weights_data)
 | 
						|
 | 
						|
    # Create iterator, which yields out info after each optimization step.
 | 
						|
    msg.info("Start training")
 | 
						|
    score_weights = T_cfg["score_weights"]
 | 
						|
    training_step_iterator = train_while_improving(
 | 
						|
        nlp,
 | 
						|
        optimizer,
 | 
						|
        create_train_batches(train_corpus(nlp), batcher, T_cfg["max_epochs"]),
 | 
						|
        create_evaluation_callback(nlp, dev_corpus, score_weights),
 | 
						|
        dropout=T_cfg["dropout"],
 | 
						|
        accumulate_gradient=T_cfg["accumulate_gradient"],
 | 
						|
        patience=T_cfg["patience"],
 | 
						|
        max_steps=T_cfg["max_steps"],
 | 
						|
        eval_frequency=T_cfg["eval_frequency"],
 | 
						|
        raw_text=None,
 | 
						|
        exclude=frozen_components,
 | 
						|
    )
 | 
						|
    msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
 | 
						|
    print_row, finalize_logger = train_logger(nlp)
 | 
						|
 | 
						|
    try:
 | 
						|
        progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
 | 
						|
        progress.set_description(f"Epoch 1")
 | 
						|
        for batch, info, is_best_checkpoint in training_step_iterator:
 | 
						|
            progress.update(1)
 | 
						|
            if is_best_checkpoint is not None:
 | 
						|
                progress.close()
 | 
						|
                print_row(info)
 | 
						|
                if is_best_checkpoint and output_path is not None:
 | 
						|
                    update_meta(T_cfg, nlp, info)
 | 
						|
                    nlp.to_disk(output_path / "model-best")
 | 
						|
                progress = tqdm.tqdm(total=T_cfg["eval_frequency"], leave=False)
 | 
						|
                progress.set_description(f"Epoch {info['epoch']}")
 | 
						|
    except Exception as e:
 | 
						|
        finalize_logger()
 | 
						|
        if output_path is not None:
 | 
						|
            # We don't want to swallow the traceback if we don't have a
 | 
						|
            # specific error.
 | 
						|
            msg.warn(
 | 
						|
                f"Aborting and saving the final best model. "
 | 
						|
                f"Encountered exception: {str(e)}"
 | 
						|
            )
 | 
						|
            nlp.to_disk(output_path / "model-final")
 | 
						|
        raise e
 | 
						|
    finally:
 | 
						|
        finalize_logger()
 | 
						|
        if output_path is not None:
 | 
						|
            final_model_path = output_path / "model-final"
 | 
						|
            if optimizer.averages:
 | 
						|
                with nlp.use_params(optimizer.averages):
 | 
						|
                    nlp.to_disk(final_model_path)
 | 
						|
            else:
 | 
						|
                nlp.to_disk(final_model_path)
 | 
						|
            msg.good(f"Saved model to output directory {final_model_path}")
 | 
						|
 | 
						|
 | 
						|
def create_train_batches(iterator, batcher, max_epochs: int):
 | 
						|
    epoch = 1
 | 
						|
    examples = []
 | 
						|
    # Stream the first epoch, so we start training faster and support
 | 
						|
    # infinite streams.
 | 
						|
    for batch in batcher(iterator):
 | 
						|
        yield epoch, batch
 | 
						|
        if max_epochs != 1:
 | 
						|
            examples.extend(batch)
 | 
						|
    if not examples:
 | 
						|
        # Raise error if no data
 | 
						|
        raise ValueError(Errors.E986)
 | 
						|
    while epoch != max_epochs:
 | 
						|
        random.shuffle(examples)
 | 
						|
        for batch in batcher(examples):
 | 
						|
            yield epoch, batch
 | 
						|
        epoch += 1
 | 
						|
 | 
						|
 | 
						|
def create_evaluation_callback(
 | 
						|
    nlp: Language, dev_corpus: Callable, weights: Dict[str, float]
 | 
						|
) -> Callable[[], Tuple[float, Dict[str, float]]]:
 | 
						|
    def evaluate() -> Tuple[float, Dict[str, float]]:
 | 
						|
        dev_examples = list(dev_corpus(nlp))
 | 
						|
        scores = nlp.evaluate(dev_examples)
 | 
						|
        # Calculate a weighted sum based on score_weights for the main score
 | 
						|
        try:
 | 
						|
            weighted_score = sum(
 | 
						|
                scores.get(s, 0.0) * weights.get(s, 0.0) for s in weights
 | 
						|
            )
 | 
						|
        except KeyError as e:
 | 
						|
            keys = list(scores.keys())
 | 
						|
            err = Errors.E983.format(dict="score_weights", key=str(e), keys=keys)
 | 
						|
            raise KeyError(err) from None
 | 
						|
        return weighted_score, scores
 | 
						|
 | 
						|
    return evaluate
 | 
						|
 | 
						|
 | 
						|
def train_while_improving(
 | 
						|
    nlp: Language,
 | 
						|
    optimizer: Optimizer,
 | 
						|
    train_data,
 | 
						|
    evaluate,
 | 
						|
    *,
 | 
						|
    dropout: float,
 | 
						|
    eval_frequency: int,
 | 
						|
    accumulate_gradient: int,
 | 
						|
    patience: int,
 | 
						|
    max_steps: int,
 | 
						|
    raw_text: List[Dict[str, str]],
 | 
						|
    exclude: List[str],
 | 
						|
):
 | 
						|
    """Train until an evaluation stops improving. Works as a generator,
 | 
						|
    with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
 | 
						|
    where info is a dict, and is_best_checkpoint is in [True, False, None] --
 | 
						|
    None indicating that the iteration was not evaluated as a checkpoint.
 | 
						|
    The evaluation is conducted by calling the evaluate callback.
 | 
						|
 | 
						|
    Positional arguments:
 | 
						|
        nlp: The spaCy pipeline to evaluate.
 | 
						|
        optimizer: The optimizer callable.
 | 
						|
        train_data (Iterable[Batch]): A generator of batches, with the training
 | 
						|
            data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
 | 
						|
            data iterable needs to take care of iterating over the epochs and
 | 
						|
            shuffling.
 | 
						|
        evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
 | 
						|
            The callback should take no arguments and return a tuple
 | 
						|
            `(main_score, other_scores)`. The main_score should be a float where
 | 
						|
            higher is better. other_scores can be any object.
 | 
						|
 | 
						|
    Every iteration, the function yields out a tuple with:
 | 
						|
 | 
						|
    * batch: A list of Example objects.
 | 
						|
    * info: A dict with various information about the last update (see below).
 | 
						|
    * is_best_checkpoint: A value in None, False, True, indicating whether this
 | 
						|
        was the best evaluation so far. You should use this to save the model
 | 
						|
        checkpoints during training. If None, evaluation was not conducted on
 | 
						|
        that iteration. False means evaluation was conducted, but a previous
 | 
						|
        evaluation was better.
 | 
						|
 | 
						|
    The info dict provides the following information:
 | 
						|
 | 
						|
        epoch (int): How many passes over the data have been completed.
 | 
						|
        step (int): How many steps have been completed.
 | 
						|
        score (float): The main score form the last evaluation.
 | 
						|
        other_scores: : The other scores from the last evaluation.
 | 
						|
        loss: The accumulated losses throughout training.
 | 
						|
        checkpoints: A list of previous results, where each result is a
 | 
						|
            (score, step, epoch) tuple.
 | 
						|
    """
 | 
						|
    if isinstance(dropout, float):
 | 
						|
        dropouts = thinc.schedules.constant(dropout)
 | 
						|
    else:
 | 
						|
        dropouts = dropout
 | 
						|
    results = []
 | 
						|
    losses = {}
 | 
						|
    if raw_text:
 | 
						|
        random.shuffle(raw_text)
 | 
						|
        raw_examples = [
 | 
						|
            Example.from_dict(nlp.make_doc(rt["text"]), {}) for rt in raw_text
 | 
						|
        ]
 | 
						|
        raw_batches = util.minibatch(raw_examples, size=8)
 | 
						|
 | 
						|
    for step, (epoch, batch) in enumerate(train_data):
 | 
						|
        dropout = next(dropouts)
 | 
						|
        for subbatch in subdivide_batch(batch, accumulate_gradient):
 | 
						|
            nlp.update(
 | 
						|
                subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude
 | 
						|
            )
 | 
						|
            if raw_text:
 | 
						|
                # If raw text is available, perform 'rehearsal' updates,
 | 
						|
                # which use unlabelled data to reduce overfitting.
 | 
						|
                raw_batch = list(next(raw_batches))
 | 
						|
                nlp.rehearse(raw_batch, sgd=optimizer, losses=losses, exclude=exclude)
 | 
						|
        # TODO: refactor this so we don't have to run it separately in here
 | 
						|
        for name, proc in nlp.pipeline:
 | 
						|
            if (
 | 
						|
                name not in exclude
 | 
						|
                and hasattr(proc, "model")
 | 
						|
                and proc.model not in (True, False, None)
 | 
						|
            ):
 | 
						|
                proc.model.finish_update(optimizer)
 | 
						|
        optimizer.step_schedules()
 | 
						|
        if not (step % eval_frequency):
 | 
						|
            if optimizer.averages:
 | 
						|
                with nlp.use_params(optimizer.averages):
 | 
						|
                    score, other_scores = evaluate()
 | 
						|
            else:
 | 
						|
                score, other_scores = evaluate()
 | 
						|
            results.append((score, step))
 | 
						|
            is_best_checkpoint = score == max(results)[0]
 | 
						|
        else:
 | 
						|
            score, other_scores = (None, None)
 | 
						|
            is_best_checkpoint = None
 | 
						|
        info = {
 | 
						|
            "epoch": epoch,
 | 
						|
            "step": step,
 | 
						|
            "score": score,
 | 
						|
            "other_scores": other_scores,
 | 
						|
            "losses": losses,
 | 
						|
            "checkpoints": results,
 | 
						|
        }
 | 
						|
        yield batch, info, is_best_checkpoint
 | 
						|
        if is_best_checkpoint is not None:
 | 
						|
            losses = {}
 | 
						|
        # Stop if no improvement in `patience` updates (if specified)
 | 
						|
        best_score, best_step = max(results)
 | 
						|
        if patience and (step - best_step) >= patience:
 | 
						|
            break
 | 
						|
        # Stop if we've exhausted our max steps (if specified)
 | 
						|
        if max_steps and step >= max_steps:
 | 
						|
            break
 | 
						|
 | 
						|
 | 
						|
def subdivide_batch(batch, accumulate_gradient):
 | 
						|
    batch = list(batch)
 | 
						|
    batch.sort(key=lambda eg: len(eg.predicted))
 | 
						|
    sub_len = len(batch) // accumulate_gradient
 | 
						|
    start = 0
 | 
						|
    for i in range(accumulate_gradient):
 | 
						|
        subbatch = batch[start : start + sub_len]
 | 
						|
        if subbatch:
 | 
						|
            yield subbatch
 | 
						|
        start += len(subbatch)
 | 
						|
    subbatch = batch[start:]
 | 
						|
    if subbatch:
 | 
						|
        yield subbatch
 | 
						|
 | 
						|
 | 
						|
def update_meta(
 | 
						|
    training: Union[Dict[str, Any], Config], nlp: Language, info: Dict[str, Any]
 | 
						|
) -> None:
 | 
						|
    nlp.meta["performance"] = {}
 | 
						|
    for metric in training["score_weights"]:
 | 
						|
        nlp.meta["performance"][metric] = info["other_scores"].get(metric, 0.0)
 | 
						|
    for pipe_name in nlp.pipe_names:
 | 
						|
        nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
 | 
						|
 | 
						|
 | 
						|
def load_from_paths(
 | 
						|
    config: Config,
 | 
						|
) -> Tuple[List[Dict[str, str]], Dict[str, dict], bytes]:
 | 
						|
    # TODO: separate checks from loading
 | 
						|
    raw_text = util.ensure_path(config["training"]["raw_text"])
 | 
						|
    if raw_text is not None:
 | 
						|
        if not raw_text.exists():
 | 
						|
            msg.fail("Can't find raw text", raw_text, exits=1)
 | 
						|
        raw_text = list(srsly.read_jsonl(config["training"]["raw_text"]))
 | 
						|
    tag_map = {}
 | 
						|
    morph_rules = {}
 | 
						|
    weights_data = None
 | 
						|
    init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"])
 | 
						|
    if init_tok2vec is not None:
 | 
						|
        if not init_tok2vec.exists():
 | 
						|
            msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
 | 
						|
        with init_tok2vec.open("rb") as file_:
 | 
						|
            weights_data = file_.read()
 | 
						|
    return raw_text, tag_map, morph_rules, weights_data
 | 
						|
 | 
						|
 | 
						|
def verify_cli_args(config_path: Path, output_path: Optional[Path] = None) -> None:
 | 
						|
    # Make sure all files and paths exists if they are needed
 | 
						|
    if not config_path or not config_path.exists():
 | 
						|
        msg.fail("Config file not found", config_path, exits=1)
 | 
						|
    if output_path is not None:
 | 
						|
        if not output_path.exists():
 | 
						|
            output_path.mkdir()
 | 
						|
            msg.good(f"Created output directory: {output_path}")
 | 
						|
 | 
						|
 | 
						|
def verify_config(nlp: Language) -> None:
 | 
						|
    """Perform additional checks based on the config and loaded nlp object."""
 | 
						|
    # TODO: maybe we should validate based on the actual components, the list
 | 
						|
    # in config["nlp"]["pipeline"] instead?
 | 
						|
    for pipe_config in nlp.config["components"].values():
 | 
						|
        # We can't assume that the component name == the factory
 | 
						|
        factory = pipe_config["factory"]
 | 
						|
        if factory == "textcat":
 | 
						|
            verify_textcat_config(nlp, pipe_config)
 | 
						|
 | 
						|
 | 
						|
def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None:
 | 
						|
    # if 'positive_label' is provided: double check whether it's in the data and
 | 
						|
    # the task is binary
 | 
						|
    if pipe_config.get("positive_label"):
 | 
						|
        textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", [])
 | 
						|
        pos_label = pipe_config.get("positive_label")
 | 
						|
        if pos_label not in textcat_labels:
 | 
						|
            msg.fail(
 | 
						|
                f"The textcat's 'positive_label' config setting '{pos_label}' "
 | 
						|
                f"does not match any label in the training data.",
 | 
						|
                exits=1,
 | 
						|
            )
 | 
						|
        if len(textcat_labels) != 2:
 | 
						|
            msg.fail(
 | 
						|
                f"A textcat 'positive_label' '{pos_label}' was "
 | 
						|
                f"provided for training data that does not appear to be a "
 | 
						|
                f"binary classification problem with two labels.",
 | 
						|
                exits=1,
 | 
						|
            )
 |