spaCy/spacy/cli/train.py
2017-05-24 20:10:20 -05:00

142 lines
5.4 KiB
Python

# coding: utf8
from __future__ import unicode_literals, division, print_function
import plac
import json
from collections import defaultdict
import cytoolz
from pathlib import Path
import dill
import tqdm
from thinc.neural.optimizers import linear_decay
from timeit import default_timer as timer
from ..tokens.doc import Doc
from ..scorer import Scorer
from ..gold import GoldParse, merge_sents
from ..gold import GoldCorpus
from ..util import prints
from .. import util
from .. import displacy
@plac.annotations(
lang=("model language", "positional", None, str),
output_dir=("output directory to store model in", "positional", None, str),
train_data=("location of JSON-formatted training data", "positional", None, str),
dev_data=("location of JSON-formatted development data (optional)", "positional", None, str),
n_iter=("number of iterations", "option", "n", int),
n_sents=("number of sentences", "option", "ns", int),
use_gpu=("Use GPU", "flag", "G", bool),
no_tagger=("Don't train tagger", "flag", "T", bool),
no_parser=("Don't train parser", "flag", "P", bool),
no_entities=("Don't train NER", "flag", "N", bool)
)
def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
use_gpu=False, no_tagger=False, no_parser=False, no_entities=False):
"""Train a model. Expects data in spaCy's JSON format."""
n_sents = n_sents or None
output_path = util.ensure_path(output_dir)
train_path = util.ensure_path(train_data)
dev_path = util.ensure_path(dev_data)
if not output_path.exists():
prints(output_path, title="Output directory not found", exits=1)
if not train_path.exists():
prints(train_path, title="Training data not found", exits=1)
if dev_path and not dev_path.exists():
prints(dev_path, title="Development data not found", exits=1)
lang_class = util.get_lang_class(lang)
pipeline = ['token_vectors', 'tags', 'dependencies', 'entities']
if no_tagger and 'tags' in pipeline: pipeline.remove('tags')
if no_parser and 'dependencies' in pipeline: pipeline.remove('dependencies')
if no_entities and 'entities' in pipeline: pipeline.remove('entities')
nlp = lang_class(pipeline=pipeline)
corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
dropout = util.env_opt('dropout', 0.0)
dropout_decay = util.env_opt('dropout_decay', 0.0)
orig_dropout = dropout
optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
n_train_docs = corpus.count_train()
batch_size = float(util.env_opt('min_batch_size', 4))
max_batch_size = util.env_opt('max_batch_size', 64)
batch_accel = util.env_opt('batch_accel', 1.001)
print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
for i in range(n_iter):
with tqdm.tqdm(total=n_train_docs) as pbar:
train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True,
gold_preproc=False)
losses = {}
idx = 0
while idx < n_train_docs:
batch = list(cytoolz.take(int(batch_size), train_docs))
if not batch:
break
docs, golds = zip(*batch)
nlp.update(docs, golds, drop=dropout, sgd=optimizer, losses=losses)
pbar.update(len(docs))
idx += len(docs)
batch_size *= batch_accel
batch_size = min(batch_size, max_batch_size)
dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
with nlp.use_params(optimizer.averages):
start = timer()
scorer = nlp.evaluate(corpus.dev_docs(nlp, gold_preproc=False))
end = timer()
n_words = scorer.tokens.tp + scorer.tokens.fn
assert n_words != 0
wps = n_words / (end-start)
print_progress(i, losses, scorer.scores, wps=wps)
with (output_path / 'model.bin').open('wb') as file_:
with nlp.use_params(optimizer.averages):
dill.dump(nlp, file_, -1)
def _render_parses(i, to_render):
to_render[0].user_data['title'] = "Batch %d" % i
with Path('/tmp/entities.html').open('w') as file_:
html = displacy.render(to_render[:5], style='ent', page=True)
file_.write(html)
with Path('/tmp/parses.html').open('w') as file_:
html = displacy.render(to_render[:5], style='dep', page=True)
file_.write(html)
def print_progress(itn, losses, dev_scores, wps=0.0):
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
'ents_p', 'ents_r', 'ents_f', 'wps']:
scores[col] = 0.0
scores['dep_loss'] = losses.get('parser', 0.0)
scores['tag_loss'] = losses.get('tagger', 0.0)
scores.update(dev_scores)
scores['wps'] = wps
tpl = '\t'.join((
'{:d}',
'{dep_loss:.3f}',
'{tag_loss:.3f}',
'{uas:.3f}',
'{ents_p:.3f}',
'{ents_r:.3f}',
'{ents_f:.3f}',
'{tags_acc:.3f}',
'{token_acc:.3f}',
'{wps:.1f}'))
print(tpl.format(itn, **scores))
def print_results(scorer):
results = {
'TOK': '%.2f' % scorer.token_acc,
'POS': '%.2f' % scorer.tags_acc,
'UAS': '%.2f' % scorer.uas,
'LAS': '%.2f' % scorer.las,
'NER P': '%.2f' % scorer.ents_p,
'NER R': '%.2f' % scorer.ents_r,
'NER F': '%.2f' % scorer.ents_f}
util.print_table(results, title="Results")