mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 18:36:36 +03:00
0ba1b5eebc
* document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
263 lines
7.0 KiB
Python
263 lines
7.0 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import re
|
|
import bz2
|
|
import csv
|
|
import datetime
|
|
|
|
"""
|
|
Process a Wikipedia dump to calculate entity frequencies and prior probabilities in combination with certain mentions.
|
|
Write these results to file for downstream KB and training data generation.
|
|
"""
|
|
|
|
map_alias_to_link = dict()
|
|
|
|
# these will/should be matched ignoring case
|
|
wiki_namespaces = [
|
|
"b",
|
|
"betawikiversity",
|
|
"Book",
|
|
"c",
|
|
"Category",
|
|
"Commons",
|
|
"d",
|
|
"dbdump",
|
|
"download",
|
|
"Draft",
|
|
"Education",
|
|
"Foundation",
|
|
"Gadget",
|
|
"Gadget definition",
|
|
"gerrit",
|
|
"File",
|
|
"Help",
|
|
"Image",
|
|
"Incubator",
|
|
"m",
|
|
"mail",
|
|
"mailarchive",
|
|
"media",
|
|
"MediaWiki",
|
|
"MediaWiki talk",
|
|
"Mediawikiwiki",
|
|
"MediaZilla",
|
|
"Meta",
|
|
"Metawikipedia",
|
|
"Module",
|
|
"mw",
|
|
"n",
|
|
"nost",
|
|
"oldwikisource",
|
|
"outreach",
|
|
"outreachwiki",
|
|
"otrs",
|
|
"OTRSwiki",
|
|
"Portal",
|
|
"phab",
|
|
"Phabricator",
|
|
"Project",
|
|
"q",
|
|
"quality",
|
|
"rev",
|
|
"s",
|
|
"spcom",
|
|
"Special",
|
|
"species",
|
|
"Strategy",
|
|
"sulutil",
|
|
"svn",
|
|
"Talk",
|
|
"Template",
|
|
"Template talk",
|
|
"Testwiki",
|
|
"ticket",
|
|
"TimedText",
|
|
"Toollabs",
|
|
"tools",
|
|
"tswiki",
|
|
"User",
|
|
"User talk",
|
|
"v",
|
|
"voy",
|
|
"w",
|
|
"Wikibooks",
|
|
"Wikidata",
|
|
"wikiHow",
|
|
"Wikinvest",
|
|
"wikilivres",
|
|
"Wikimedia",
|
|
"Wikinews",
|
|
"Wikipedia",
|
|
"Wikipedia talk",
|
|
"Wikiquote",
|
|
"Wikisource",
|
|
"Wikispecies",
|
|
"Wikitech",
|
|
"Wikiversity",
|
|
"Wikivoyage",
|
|
"wikt",
|
|
"wiktionary",
|
|
"wmf",
|
|
"wmania",
|
|
"WP",
|
|
]
|
|
|
|
# find the links
|
|
link_regex = re.compile(r"\[\[[^\[\]]*\]\]")
|
|
|
|
# match on interwiki links, e.g. `en:` or `:fr:`
|
|
ns_regex = r":?" + "[a-z][a-z]" + ":"
|
|
|
|
# match on Namespace: optionally preceded by a :
|
|
for ns in wiki_namespaces:
|
|
ns_regex += "|" + ":?" + ns + ":"
|
|
|
|
ns_regex = re.compile(ns_regex, re.IGNORECASE)
|
|
|
|
|
|
def now():
|
|
return datetime.datetime.now()
|
|
|
|
|
|
def read_prior_probs(wikipedia_input, prior_prob_output, limit=None):
|
|
"""
|
|
Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities.
|
|
The full file takes about 2h to parse 1100M lines.
|
|
It works relatively fast because it runs line by line, irrelevant of which article the intrawiki is from.
|
|
"""
|
|
with bz2.open(wikipedia_input, mode="rb") as file:
|
|
line = file.readline()
|
|
cnt = 0
|
|
while line and (not limit or cnt < limit):
|
|
if cnt % 25000000 == 0:
|
|
print(now(), "processed", cnt, "lines of Wikipedia XML dump")
|
|
clean_line = line.strip().decode("utf-8")
|
|
|
|
aliases, entities, normalizations = get_wp_links(clean_line)
|
|
for alias, entity, norm in zip(aliases, entities, normalizations):
|
|
_store_alias(alias, entity, normalize_alias=norm, normalize_entity=True)
|
|
_store_alias(alias, entity, normalize_alias=norm, normalize_entity=True)
|
|
|
|
line = file.readline()
|
|
cnt += 1
|
|
print(now(), "processed", cnt, "lines of Wikipedia XML dump")
|
|
|
|
# write all aliases and their entities and count occurrences to file
|
|
with prior_prob_output.open("w", encoding="utf8") as outputfile:
|
|
outputfile.write("alias" + "|" + "count" + "|" + "entity" + "\n")
|
|
for alias, alias_dict in sorted(map_alias_to_link.items(), key=lambda x: x[0]):
|
|
s_dict = sorted(alias_dict.items(), key=lambda x: x[1], reverse=True)
|
|
for entity, count in s_dict:
|
|
outputfile.write(alias + "|" + str(count) + "|" + entity + "\n")
|
|
|
|
|
|
def _store_alias(alias, entity, normalize_alias=False, normalize_entity=True):
|
|
alias = alias.strip()
|
|
entity = entity.strip()
|
|
|
|
# remove everything after # as this is not part of the title but refers to a specific paragraph
|
|
if normalize_entity:
|
|
# wikipedia titles are always capitalized
|
|
entity = _capitalize_first(entity.split("#")[0])
|
|
if normalize_alias:
|
|
alias = alias.split("#")[0]
|
|
|
|
if alias and entity:
|
|
alias_dict = map_alias_to_link.get(alias, dict())
|
|
entity_count = alias_dict.get(entity, 0)
|
|
alias_dict[entity] = entity_count + 1
|
|
map_alias_to_link[alias] = alias_dict
|
|
|
|
|
|
def get_wp_links(text):
|
|
aliases = []
|
|
entities = []
|
|
normalizations = []
|
|
|
|
matches = link_regex.findall(text)
|
|
for match in matches:
|
|
match = match[2:][:-2].replace("_", " ").strip()
|
|
|
|
if ns_regex.match(match):
|
|
pass # ignore namespaces at the beginning of the string
|
|
|
|
# this is a simple [[link]], with the alias the same as the mention
|
|
elif "|" not in match:
|
|
aliases.append(match)
|
|
entities.append(match)
|
|
normalizations.append(True)
|
|
|
|
# in wiki format, the link is written as [[entity|alias]]
|
|
else:
|
|
splits = match.split("|")
|
|
entity = splits[0].strip()
|
|
alias = splits[1].strip()
|
|
# specific wiki format [[alias (specification)|]]
|
|
if len(alias) == 0 and "(" in entity:
|
|
alias = entity.split("(")[0]
|
|
aliases.append(alias)
|
|
entities.append(entity)
|
|
normalizations.append(False)
|
|
else:
|
|
aliases.append(alias)
|
|
entities.append(entity)
|
|
normalizations.append(False)
|
|
|
|
return aliases, entities, normalizations
|
|
|
|
|
|
def _capitalize_first(text):
|
|
if not text:
|
|
return None
|
|
result = text[0].capitalize()
|
|
if len(result) > 0:
|
|
result += text[1:]
|
|
return result
|
|
|
|
|
|
def write_entity_counts(prior_prob_input, count_output, to_print=False):
|
|
# Write entity counts for quick access later
|
|
entity_to_count = dict()
|
|
total_count = 0
|
|
|
|
with prior_prob_input.open("r", encoding="utf8") as prior_file:
|
|
# skip header
|
|
prior_file.readline()
|
|
line = prior_file.readline()
|
|
|
|
while line:
|
|
splits = line.replace("\n", "").split(sep="|")
|
|
# alias = splits[0]
|
|
count = int(splits[1])
|
|
entity = splits[2]
|
|
|
|
current_count = entity_to_count.get(entity, 0)
|
|
entity_to_count[entity] = current_count + count
|
|
|
|
total_count += count
|
|
|
|
line = prior_file.readline()
|
|
|
|
with count_output.open("w", encoding="utf8") as entity_file:
|
|
entity_file.write("entity" + "|" + "count" + "\n")
|
|
for entity, count in entity_to_count.items():
|
|
entity_file.write(entity + "|" + str(count) + "\n")
|
|
|
|
if to_print:
|
|
for entity, count in entity_to_count.items():
|
|
print("Entity count:", entity, count)
|
|
print("Total count:", total_count)
|
|
|
|
|
|
def get_all_frequencies(count_input):
|
|
entity_to_count = dict()
|
|
with count_input.open("r", encoding="utf8") as csvfile:
|
|
csvreader = csv.reader(csvfile, delimiter="|")
|
|
# skip header
|
|
next(csvreader)
|
|
for row in csvreader:
|
|
entity_to_count[row[0]] = int(row[1])
|
|
|
|
return entity_to_count
|