spaCy/spacy/tests/test_misc.py
Ines Montani b6e991440c 💫 Tidy up and auto-format tests (#2967)
* Auto-format tests with black

* Add flake8 config

* Tidy up and remove unused imports

* Fix redefinitions of test functions

* Replace orths_and_spaces with words and spaces

* Fix compatibility with pytest 4.0

* xfail test for now

Test was previously overwritten by following test due to naming conflict, so failure wasn't reported

* Unfail passing test

* Only use fixture via arguments

Fixes pytest 4.0 compatibility
2018-11-27 01:09:36 +01:00

103 lines
3.4 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from pathlib import Path
from spacy import util
from spacy import displacy
from spacy.tokens import Span
from spacy._ml import PrecomputableAffine
from .util import get_doc
@pytest.mark.parametrize("text", ["hello/world", "hello world"])
def test_util_ensure_path_succeeds(text):
path = util.ensure_path(text)
assert isinstance(path, Path)
@pytest.mark.parametrize("package", ["numpy"])
def test_util_is_package(package):
"""Test that an installed package via pip is recognised by util.is_package."""
assert util.is_package(package)
@pytest.mark.parametrize("package", ["thinc"])
def test_util_get_package_path(package):
"""Test that a Path object is returned for a package name."""
path = util.get_package_path(package)
assert isinstance(path, Path)
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [{"start": 4, "end": 10, "label": "ORG"}]
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 0, 1, -2]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
{"text": "This", "tag": "DET"},
{"text": "is", "tag": "VERB"},
{"text": "a", "tag": "DET"},
{"text": "sentence", "tag": "NOUN"},
]
assert deps["arcs"] == [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
]
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
def test_displacy_raises_for_wrong_type(en_vocab):
with pytest.raises(ValueError):
html = displacy.render("hello world")
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
assert model.W.shape == (nF, nO, nP, nI)
tensor = model.ops.allocate((10, nI))
Y, get_dX = model.begin_update(tensor)
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
assert model.d_pad.shape == (1, nF, nO, nP)
dY = model.ops.allocate((15, nO, nP))
ids = model.ops.allocate((15, nF))
ids[1, 2] = -1
dY[1] = 1
assert model.d_pad[0, 2, 0, 0] == 0.0
model._backprop_padding(dY, ids)
assert model.d_pad[0, 2, 0, 0] == 1.0
model.d_pad.fill(0.0)
ids.fill(0.0)
dY.fill(0.0)
ids[1, 2] = -1
ids[1, 1] = -1
ids[1, 0] = -1
dY[1] = 1
assert model.d_pad[0, 2, 0, 0] == 0.0
model._backprop_padding(dY, ids)
assert model.d_pad[0, 2, 0, 0] == 3.0