mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 18:36:36 +03:00
8e7557656f
* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
from spacy.training import Example
|
|
from spacy.pipeline import EntityRecognizer
|
|
from spacy.tokens import Span, Doc
|
|
from spacy import registry
|
|
import pytest
|
|
|
|
from ..util import get_doc
|
|
from spacy.pipeline.ner import DEFAULT_NER_MODEL
|
|
|
|
|
|
def _ner_example(ner):
|
|
doc = Doc(ner.vocab, words=["Joe", "loves", "visiting", "London", "during", "the", "weekend"])
|
|
gold = {"entities": [(0, 3, "PERSON"), (19, 25, "LOC")]}
|
|
return Example.from_dict(doc, gold)
|
|
|
|
|
|
def test_doc_add_entities_set_ents_iob(en_vocab):
|
|
text = ["This", "is", "a", "lion"]
|
|
doc = get_doc(en_vocab, text)
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
|
model = registry.make_from_config(cfg, validate=True)["model"]
|
|
ner = EntityRecognizer(en_vocab, model, **config)
|
|
ner.begin_training(lambda: [_ner_example(ner)])
|
|
ner(doc)
|
|
|
|
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
|
|
assert [w.ent_iob_ for w in doc] == ["O", "O", "O", "B"]
|
|
|
|
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
|
|
assert [w.ent_iob_ for w in doc] == ["B", "I", "O", "O"]
|
|
|
|
|
|
def test_ents_reset(en_vocab):
|
|
"""Ensure that resetting doc.ents does not change anything"""
|
|
text = ["This", "is", "a", "lion"]
|
|
doc = get_doc(en_vocab, text)
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"update_with_oracle_cut_size": 100,
|
|
}
|
|
cfg = {"model": DEFAULT_NER_MODEL}
|
|
model = registry.make_from_config(cfg, validate=True)["model"]
|
|
ner = EntityRecognizer(en_vocab, model, **config)
|
|
ner.begin_training(lambda: [_ner_example(ner)])
|
|
ner(doc)
|
|
orig_iobs = [t.ent_iob_ for t in doc]
|
|
doc.ents = list(doc.ents)
|
|
assert [t.ent_iob_ for t in doc] == orig_iobs
|
|
|
|
|
|
def test_add_overlapping_entities(en_vocab):
|
|
text = ["Louisiana", "Office", "of", "Conservation"]
|
|
doc = get_doc(en_vocab, text)
|
|
entity = Span(doc, 0, 4, label=391)
|
|
doc.ents = [entity]
|
|
|
|
new_entity = Span(doc, 0, 1, label=392)
|
|
with pytest.raises(ValueError):
|
|
doc.ents = list(doc.ents) + [new_entity]
|