mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* version bump to 3.0.0a16 * rename "gold" folder to "training" * rename 'annotation_setter' to 'set_extra_annotations' * formatting
		
			
				
	
	
		
			466 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from itertools import islice
 | 
						|
from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List, Tuple
 | 
						|
from pathlib import Path
 | 
						|
import srsly
 | 
						|
import random
 | 
						|
from thinc.api import CosineDistance, Model, Optimizer, Config
 | 
						|
from thinc.api import set_dropout_rate
 | 
						|
import warnings
 | 
						|
 | 
						|
from ..kb import KnowledgeBase, Candidate
 | 
						|
from ..tokens import Doc
 | 
						|
from .pipe import Pipe, deserialize_config
 | 
						|
from ..language import Language
 | 
						|
from ..vocab import Vocab
 | 
						|
from ..training import Example, validate_examples
 | 
						|
from ..errors import Errors, Warnings
 | 
						|
from ..util import SimpleFrozenList
 | 
						|
from .. import util
 | 
						|
 | 
						|
 | 
						|
default_model_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.EntityLinker.v1"
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v1"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 96
 | 
						|
depth = 2
 | 
						|
embed_size = 300
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
"""
 | 
						|
DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "entity_linker",
 | 
						|
    requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
 | 
						|
    assigns=["token.ent_kb_id"],
 | 
						|
    default_config={
 | 
						|
        "kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
 | 
						|
        "model": DEFAULT_NEL_MODEL,
 | 
						|
        "labels_discard": [],
 | 
						|
        "incl_prior": True,
 | 
						|
        "incl_context": True,
 | 
						|
        "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
 | 
						|
    },
 | 
						|
)
 | 
						|
def make_entity_linker(
 | 
						|
    nlp: Language,
 | 
						|
    name: str,
 | 
						|
    model: Model,
 | 
						|
    kb_loader: Callable[[Vocab], KnowledgeBase],
 | 
						|
    *,
 | 
						|
    labels_discard: Iterable[str],
 | 
						|
    incl_prior: bool,
 | 
						|
    incl_context: bool,
 | 
						|
    get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
 | 
						|
):
 | 
						|
    """Construct an EntityLinker component.
 | 
						|
 | 
						|
    model (Model[List[Doc], Floats2d]): A model that learns document vector
 | 
						|
        representations. Given a batch of Doc objects, it should return a single
 | 
						|
        array, with one row per item in the batch.
 | 
						|
    kb (KnowledgeBase): The knowledge-base to link entities to.
 | 
						|
    labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | 
						|
    incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
						|
    incl_context (bool): Whether or not to include the local context in the model.
 | 
						|
    """
 | 
						|
    return EntityLinker(
 | 
						|
        nlp.vocab,
 | 
						|
        model,
 | 
						|
        name,
 | 
						|
        kb_loader=kb_loader,
 | 
						|
        labels_discard=labels_discard,
 | 
						|
        incl_prior=incl_prior,
 | 
						|
        incl_context=incl_context,
 | 
						|
        get_candidates=get_candidates,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
class EntityLinker(Pipe):
 | 
						|
    """Pipeline component for named entity linking.
 | 
						|
 | 
						|
    DOCS: https://nightly.spacy.io/api/entitylinker
 | 
						|
    """
 | 
						|
 | 
						|
    NIL = "NIL"  # string used to refer to a non-existing link
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab: Vocab,
 | 
						|
        model: Model,
 | 
						|
        name: str = "entity_linker",
 | 
						|
        *,
 | 
						|
        kb_loader: Callable[[Vocab], KnowledgeBase],
 | 
						|
        labels_discard: Iterable[str],
 | 
						|
        incl_prior: bool,
 | 
						|
        incl_context: bool,
 | 
						|
        get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
 | 
						|
    ) -> None:
 | 
						|
        """Initialize an entity linker.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
						|
        name (str): The component instance name, used to add entries to the
 | 
						|
            losses during training.
 | 
						|
        kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
 | 
						|
        labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | 
						|
        incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
						|
        incl_context (bool): Whether or not to include the local context in the model.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        cfg = {
 | 
						|
            "labels_discard": list(labels_discard),
 | 
						|
            "incl_prior": incl_prior,
 | 
						|
            "incl_context": incl_context,
 | 
						|
        }
 | 
						|
        self.kb = kb_loader(self.vocab)
 | 
						|
        self.get_candidates = get_candidates
 | 
						|
        self.cfg = dict(cfg)
 | 
						|
        self.distance = CosineDistance(normalize=False)
 | 
						|
        # how many neightbour sentences to take into account
 | 
						|
        self.n_sents = cfg.get("n_sents", 0)
 | 
						|
 | 
						|
    def _require_kb(self) -> None:
 | 
						|
        # Raise an error if the knowledge base is not initialized.
 | 
						|
        if len(self.kb) == 0:
 | 
						|
            raise ValueError(Errors.E139.format(name=self.name))
 | 
						|
 | 
						|
    def begin_training(
 | 
						|
        self,
 | 
						|
        get_examples: Callable[[], Iterable[Example]],
 | 
						|
        *,
 | 
						|
        pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
    ) -> Optimizer:
 | 
						|
        """Initialize the pipe for training, using a representative set
 | 
						|
        of data examples.
 | 
						|
 | 
						|
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
						|
            returns a representative sample of gold-standard Example objects.
 | 
						|
        pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
 | 
						|
            components that this component is part of. Corresponds to
 | 
						|
            nlp.pipeline.
 | 
						|
        sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
 | 
						|
            create_optimizer if it doesn't exist.
 | 
						|
        RETURNS (thinc.api.Optimizer): The optimizer.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#begin_training
 | 
						|
        """
 | 
						|
        self._ensure_examples(get_examples)
 | 
						|
        self._require_kb()
 | 
						|
        nO = self.kb.entity_vector_length
 | 
						|
        doc_sample = []
 | 
						|
        vector_sample = []
 | 
						|
        for example in islice(get_examples(), 10):
 | 
						|
            doc_sample.append(example.x)
 | 
						|
            vector_sample.append(self.model.ops.alloc1f(nO))
 | 
						|
        assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        assert len(vector_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        self.model.initialize(
 | 
						|
            X=doc_sample, Y=self.model.ops.asarray(vector_sample, dtype="float32")
 | 
						|
        )
 | 
						|
        if sgd is None:
 | 
						|
            sgd = self.create_optimizer()
 | 
						|
        return sgd
 | 
						|
 | 
						|
    def update(
 | 
						|
        self,
 | 
						|
        examples: Iterable[Example],
 | 
						|
        *,
 | 
						|
        set_annotations: bool = False,
 | 
						|
        drop: float = 0.0,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
        losses: Optional[Dict[str, float]] = None,
 | 
						|
    ) -> Dict[str, float]:
 | 
						|
        """Learn from a batch of documents and gold-standard information,
 | 
						|
        updating the pipe's model. Delegates to predict and get_loss.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        set_annotations (bool): Whether or not to update the Example objects
 | 
						|
            with the predictions.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#update
 | 
						|
        """
 | 
						|
        self._require_kb()
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        if not examples:
 | 
						|
            return losses
 | 
						|
        validate_examples(examples, "EntityLinker.update")
 | 
						|
        sentence_docs = []
 | 
						|
        docs = [eg.predicted for eg in examples]
 | 
						|
        if set_annotations:
 | 
						|
            # This seems simpler than other ways to get that exact output -- but
 | 
						|
            # it does run the model twice :(
 | 
						|
            predictions = self.model.predict(docs)
 | 
						|
        for eg in examples:
 | 
						|
            sentences = [s for s in eg.predicted.sents]
 | 
						|
            kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
 | 
						|
            for ent in eg.predicted.ents:
 | 
						|
                kb_id = kb_ids[
 | 
						|
                    ent.start
 | 
						|
                ]  # KB ID of the first token is the same as the whole span
 | 
						|
                if kb_id:
 | 
						|
                    try:
 | 
						|
                        # find the sentence in the list of sentences.
 | 
						|
                        sent_index = sentences.index(ent.sent)
 | 
						|
                    except AttributeError:
 | 
						|
                        # Catch the exception when ent.sent is None and provide a user-friendly warning
 | 
						|
                        raise RuntimeError(Errors.E030) from None
 | 
						|
                    # get n previous sentences, if there are any
 | 
						|
                    start_sentence = max(0, sent_index - self.n_sents)
 | 
						|
                    # get n posterior sentences, or as many < n as there are
 | 
						|
                    end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
 | 
						|
                    # get token positions
 | 
						|
                    start_token = sentences[start_sentence].start
 | 
						|
                    end_token = sentences[end_sentence].end
 | 
						|
                    # append that span as a doc to training
 | 
						|
                    sent_doc = eg.predicted[start_token:end_token].as_doc()
 | 
						|
                    sentence_docs.append(sent_doc)
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        if not sentence_docs:
 | 
						|
            warnings.warn(Warnings.W093.format(name="Entity Linker"))
 | 
						|
            return losses
 | 
						|
        sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
 | 
						|
        loss, d_scores = self.get_loss(
 | 
						|
            sentence_encodings=sentence_encodings, examples=examples
 | 
						|
        )
 | 
						|
        bp_context(d_scores)
 | 
						|
        if sgd is not None:
 | 
						|
            self.model.finish_update(sgd)
 | 
						|
        losses[self.name] += loss
 | 
						|
        if set_annotations:
 | 
						|
            self.set_annotations(docs, predictions)
 | 
						|
        return losses
 | 
						|
 | 
						|
    def get_loss(self, examples: Iterable[Example], sentence_encodings):
 | 
						|
        validate_examples(examples, "EntityLinker.get_loss")
 | 
						|
        entity_encodings = []
 | 
						|
        for eg in examples:
 | 
						|
            kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
 | 
						|
            for ent in eg.predicted.ents:
 | 
						|
                kb_id = kb_ids[ent.start]
 | 
						|
                if kb_id:
 | 
						|
                    entity_encoding = self.kb.get_vector(kb_id)
 | 
						|
                    entity_encodings.append(entity_encoding)
 | 
						|
        entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
 | 
						|
        if sentence_encodings.shape != entity_encodings.shape:
 | 
						|
            err = Errors.E147.format(
 | 
						|
                method="get_loss", msg="gold entities do not match up"
 | 
						|
            )
 | 
						|
            raise RuntimeError(err)
 | 
						|
        gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
 | 
						|
        loss = self.distance.get_loss(sentence_encodings, entity_encodings)
 | 
						|
        loss = loss / len(entity_encodings)
 | 
						|
        return loss, gradients
 | 
						|
 | 
						|
    def __call__(self, doc: Doc) -> Doc:
 | 
						|
        """Apply the pipe to a Doc.
 | 
						|
 | 
						|
        doc (Doc): The document to process.
 | 
						|
        RETURNS (Doc): The processed Doc.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#call
 | 
						|
        """
 | 
						|
        kb_ids = self.predict([doc])
 | 
						|
        self.set_annotations([doc], kb_ids)
 | 
						|
        return doc
 | 
						|
 | 
						|
    def pipe(self, stream: Iterable[Doc], *, batch_size: int = 128) -> Iterator[Doc]:
 | 
						|
        """Apply the pipe to a stream of documents. This usually happens under
 | 
						|
        the hood when the nlp object is called on a text and all components are
 | 
						|
        applied to the Doc.
 | 
						|
 | 
						|
        stream (Iterable[Doc]): A stream of documents.
 | 
						|
        batch_size (int): The number of documents to buffer.
 | 
						|
        YIELDS (Doc): Processed documents in order.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#pipe
 | 
						|
        """
 | 
						|
        for docs in util.minibatch(stream, size=batch_size):
 | 
						|
            kb_ids = self.predict(docs)
 | 
						|
            self.set_annotations(docs, kb_ids)
 | 
						|
            yield from docs
 | 
						|
 | 
						|
    def predict(self, docs: Iterable[Doc]) -> List[str]:
 | 
						|
        """Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
        Returns the KB IDs for each entity in each doc, including NIL if there is
 | 
						|
        no prediction.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to predict.
 | 
						|
        RETURNS (List[int]): The models prediction for each document.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#predict
 | 
						|
        """
 | 
						|
        self._require_kb()
 | 
						|
        entity_count = 0
 | 
						|
        final_kb_ids = []
 | 
						|
        if not docs:
 | 
						|
            return final_kb_ids
 | 
						|
        if isinstance(docs, Doc):
 | 
						|
            docs = [docs]
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            sentences = [s for s in doc.sents]
 | 
						|
            if len(doc) > 0:
 | 
						|
                # Looping through each sentence and each entity
 | 
						|
                # This may go wrong if there are entities across sentences - which shouldn't happen normally.
 | 
						|
                for sent_index, sent in enumerate(sentences):
 | 
						|
                    if sent.ents:
 | 
						|
                        # get n_neightbour sentences, clipped to the length of the document
 | 
						|
                        start_sentence = max(0, sent_index - self.n_sents)
 | 
						|
                        end_sentence = min(
 | 
						|
                            len(sentences) - 1, sent_index + self.n_sents
 | 
						|
                        )
 | 
						|
                        start_token = sentences[start_sentence].start
 | 
						|
                        end_token = sentences[end_sentence].end
 | 
						|
                        sent_doc = doc[start_token:end_token].as_doc()
 | 
						|
                        # currently, the context is the same for each entity in a sentence (should be refined)
 | 
						|
                        xp = self.model.ops.xp
 | 
						|
                        if self.cfg.get("incl_context"):
 | 
						|
                            sentence_encoding = self.model.predict([sent_doc])[0]
 | 
						|
                            sentence_encoding_t = sentence_encoding.T
 | 
						|
                            sentence_norm = xp.linalg.norm(sentence_encoding_t)
 | 
						|
                        for ent in sent.ents:
 | 
						|
                            entity_count += 1
 | 
						|
                            to_discard = self.cfg.get("labels_discard", [])
 | 
						|
                            if to_discard and ent.label_ in to_discard:
 | 
						|
                                # ignoring this entity - setting to NIL
 | 
						|
                                final_kb_ids.append(self.NIL)
 | 
						|
                            else:
 | 
						|
                                candidates = self.get_candidates(self.kb, ent)
 | 
						|
                                if not candidates:
 | 
						|
                                    # no prediction possible for this entity - setting to NIL
 | 
						|
                                    final_kb_ids.append(self.NIL)
 | 
						|
                                elif len(candidates) == 1:
 | 
						|
                                    # shortcut for efficiency reasons: take the 1 candidate
 | 
						|
                                    # TODO: thresholding
 | 
						|
                                    final_kb_ids.append(candidates[0].entity_)
 | 
						|
                                else:
 | 
						|
                                    random.shuffle(candidates)
 | 
						|
                                    # set all prior probabilities to 0 if incl_prior=False
 | 
						|
                                    prior_probs = xp.asarray(
 | 
						|
                                        [c.prior_prob for c in candidates]
 | 
						|
                                    )
 | 
						|
                                    if not self.cfg.get("incl_prior"):
 | 
						|
                                        prior_probs = xp.asarray(
 | 
						|
                                            [0.0 for _ in candidates]
 | 
						|
                                        )
 | 
						|
                                    scores = prior_probs
 | 
						|
                                    # add in similarity from the context
 | 
						|
                                    if self.cfg.get("incl_context"):
 | 
						|
                                        entity_encodings = xp.asarray(
 | 
						|
                                            [c.entity_vector for c in candidates]
 | 
						|
                                        )
 | 
						|
                                        entity_norm = xp.linalg.norm(
 | 
						|
                                            entity_encodings, axis=1
 | 
						|
                                        )
 | 
						|
                                        if len(entity_encodings) != len(prior_probs):
 | 
						|
                                            raise RuntimeError(
 | 
						|
                                                Errors.E147.format(
 | 
						|
                                                    method="predict",
 | 
						|
                                                    msg="vectors not of equal length",
 | 
						|
                                                )
 | 
						|
                                            )
 | 
						|
                                        # cosine similarity
 | 
						|
                                        sims = xp.dot(
 | 
						|
                                            entity_encodings, sentence_encoding_t
 | 
						|
                                        ) / (sentence_norm * entity_norm)
 | 
						|
                                        if sims.shape != prior_probs.shape:
 | 
						|
                                            raise ValueError(Errors.E161)
 | 
						|
                                        scores = (
 | 
						|
                                            prior_probs + sims - (prior_probs * sims)
 | 
						|
                                        )
 | 
						|
                                    # TODO: thresholding
 | 
						|
                                    best_index = scores.argmax().item()
 | 
						|
                                    best_candidate = candidates[best_index]
 | 
						|
                                    final_kb_ids.append(best_candidate.entity_)
 | 
						|
        if not (len(final_kb_ids) == entity_count):
 | 
						|
            err = Errors.E147.format(
 | 
						|
                method="predict", msg="result variables not of equal length"
 | 
						|
            )
 | 
						|
            raise RuntimeError(err)
 | 
						|
        return final_kb_ids
 | 
						|
 | 
						|
    def set_annotations(self, docs: Iterable[Doc], kb_ids: List[str]) -> None:
 | 
						|
        """Modify a batch of documents, using pre-computed scores.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to modify.
 | 
						|
        kb_ids (List[str]): The IDs to set, produced by EntityLinker.predict.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#set_annotations
 | 
						|
        """
 | 
						|
        count_ents = len([ent for doc in docs for ent in doc.ents])
 | 
						|
        if count_ents != len(kb_ids):
 | 
						|
            raise ValueError(Errors.E148.format(ents=count_ents, ids=len(kb_ids)))
 | 
						|
        i = 0
 | 
						|
        for doc in docs:
 | 
						|
            for ent in doc.ents:
 | 
						|
                kb_id = kb_ids[i]
 | 
						|
                i += 1
 | 
						|
                for token in ent:
 | 
						|
                    token.ent_kb_id_ = kb_id
 | 
						|
 | 
						|
    def to_disk(
 | 
						|
        self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
 | 
						|
    ) -> None:
 | 
						|
        """Serialize the pipe to disk.
 | 
						|
 | 
						|
        path (str / Path): Path to a directory.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#to_disk
 | 
						|
        """
 | 
						|
        serialize = {}
 | 
						|
        serialize["cfg"] = lambda p: srsly.write_json(p, self.cfg)
 | 
						|
        serialize["vocab"] = lambda p: self.vocab.to_disk(p)
 | 
						|
        serialize["kb"] = lambda p: self.kb.to_disk(p)
 | 
						|
        serialize["model"] = lambda p: self.model.to_disk(p)
 | 
						|
        util.to_disk(path, serialize, exclude)
 | 
						|
 | 
						|
    def from_disk(
 | 
						|
        self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
 | 
						|
    ) -> "EntityLinker":
 | 
						|
        """Load the pipe from disk. Modifies the object in place and returns it.
 | 
						|
 | 
						|
        path (str / Path): Path to a directory.
 | 
						|
        exclude (Iterable[str]): String names of serialization fields to exclude.
 | 
						|
        RETURNS (EntityLinker): The modified EntityLinker object.
 | 
						|
 | 
						|
        DOCS: https://nightly.spacy.io/api/entitylinker#from_disk
 | 
						|
        """
 | 
						|
 | 
						|
        def load_model(p):
 | 
						|
            try:
 | 
						|
                self.model.from_bytes(p.open("rb").read())
 | 
						|
            except AttributeError:
 | 
						|
                raise ValueError(Errors.E149) from None
 | 
						|
 | 
						|
        deserialize = {}
 | 
						|
        deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
 | 
						|
        deserialize["cfg"] = lambda p: self.cfg.update(deserialize_config(p))
 | 
						|
        deserialize["kb"] = lambda p: self.kb.from_disk(p)
 | 
						|
        deserialize["model"] = load_model
 | 
						|
        util.from_disk(path, deserialize, exclude)
 | 
						|
        return self
 | 
						|
 | 
						|
    def rehearse(self, examples, *, sgd=None, losses=None, **config):
 | 
						|
        raise NotImplementedError
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        raise NotImplementedError
 |