mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1053 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			1053 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
| # cython: infer_types=True
 | ||
| # cython: profile=False
 | ||
| # Compiler crashes on memory view coercion without this. Should report bug.
 | ||
| cimport numpy as np
 | ||
| 
 | ||
| np.import_array()
 | ||
| 
 | ||
| import warnings
 | ||
| 
 | ||
| from thinc.api import get_array_module
 | ||
| 
 | ||
| from ..attrs cimport (
 | ||
|     IS_ALPHA,
 | ||
|     IS_ASCII,
 | ||
|     IS_BRACKET,
 | ||
|     IS_CURRENCY,
 | ||
|     IS_DIGIT,
 | ||
|     IS_LEFT_PUNCT,
 | ||
|     IS_LOWER,
 | ||
|     IS_PUNCT,
 | ||
|     IS_QUOTE,
 | ||
|     IS_RIGHT_PUNCT,
 | ||
|     IS_SPACE,
 | ||
|     IS_STOP,
 | ||
|     IS_TITLE,
 | ||
|     IS_UPPER,
 | ||
|     LIKE_EMAIL,
 | ||
|     LIKE_NUM,
 | ||
|     LIKE_URL,
 | ||
|     ORTH,
 | ||
| )
 | ||
| from ..lexeme cimport Lexeme
 | ||
| from ..symbols cimport conj
 | ||
| from ..typedefs cimport hash_t
 | ||
| from .doc cimport set_children_from_heads
 | ||
| from .morphanalysis cimport MorphAnalysis
 | ||
| 
 | ||
| from .. import parts_of_speech
 | ||
| from ..attrs import IOB_STRINGS
 | ||
| from ..errors import Errors, Warnings
 | ||
| from .underscore import Underscore, get_ext_args
 | ||
| 
 | ||
| 
 | ||
| cdef class Token:
 | ||
|     """An individual token – i.e. a word, punctuation symbol, whitespace,
 | ||
|     etc.
 | ||
| 
 | ||
|     DOCS: https://spacy.io/api/token
 | ||
|     """
 | ||
|     @classmethod
 | ||
|     def set_extension(cls, name, **kwargs):
 | ||
|         """Define a custom attribute which becomes available as `Token._`.
 | ||
| 
 | ||
|         name (str): Name of the attribute to set.
 | ||
|         default: Optional default value of the attribute.
 | ||
|         getter (callable): Optional getter function.
 | ||
|         setter (callable): Optional setter function.
 | ||
|         method (callable): Optional method for method extension.
 | ||
|         force (bool): Force overwriting existing attribute.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#set_extension
 | ||
|         USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
 | ||
|         """
 | ||
|         if cls.has_extension(name) and not kwargs.get("force", False):
 | ||
|             raise ValueError(Errors.E090.format(name=name, obj="Token"))
 | ||
|         Underscore.token_extensions[name] = get_ext_args(**kwargs)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def get_extension(cls, name):
 | ||
|         """Look up a previously registered extension by name.
 | ||
| 
 | ||
|         name (str): Name of the extension.
 | ||
|         RETURNS (tuple): A `(default, method, getter, setter)` tuple.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#get_extension
 | ||
|         """
 | ||
|         return Underscore.token_extensions.get(name)
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def has_extension(cls, name):
 | ||
|         """Check whether an extension has been registered.
 | ||
| 
 | ||
|         name (str): Name of the extension.
 | ||
|         RETURNS (bool): Whether the extension has been registered.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#has_extension
 | ||
|         """
 | ||
|         return name in Underscore.token_extensions
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def remove_extension(cls, name):
 | ||
|         """Remove a previously registered extension.
 | ||
| 
 | ||
|         name (str): Name of the extension.
 | ||
|         RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
 | ||
|             removed extension.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#remove_extension
 | ||
|         """
 | ||
|         if not cls.has_extension(name):
 | ||
|             raise ValueError(Errors.E046.format(name=name))
 | ||
|         return Underscore.token_extensions.pop(name)
 | ||
| 
 | ||
|     def __cinit__(self, Vocab vocab, Doc doc, int offset):
 | ||
|         """Construct a `Token` object.
 | ||
| 
 | ||
|         vocab (Vocab): A storage container for lexical types.
 | ||
|         doc (Doc): The parent document.
 | ||
|         offset (int): The index of the token within the document.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#init
 | ||
|         """
 | ||
|         self.vocab = vocab
 | ||
|         self.doc = doc
 | ||
|         self.c = &self.doc.c[offset]
 | ||
|         self.i = offset
 | ||
| 
 | ||
|     def __hash__(self):
 | ||
|         return hash((self.doc, self.i))
 | ||
| 
 | ||
|     def __len__(self):
 | ||
|         """The number of unicode characters in the token, i.e. `token.text`.
 | ||
| 
 | ||
|         RETURNS (int): The number of unicode characters in the token.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#len
 | ||
|         """
 | ||
|         return self.c.lex.length
 | ||
| 
 | ||
|     def __unicode__(self):
 | ||
|         return self.text
 | ||
| 
 | ||
|     def __bytes__(self):
 | ||
|         return self.text.encode('utf8')
 | ||
| 
 | ||
|     def __str__(self):
 | ||
|         return self.__unicode__()
 | ||
| 
 | ||
|     def __repr__(self):
 | ||
|         return self.__str__()
 | ||
| 
 | ||
|     def __richcmp__(self, object other, int op):
 | ||
|         # http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
 | ||
|         if other is None:
 | ||
|             if op in (0, 1, 2):
 | ||
|                 return False
 | ||
|             else:
 | ||
|                 return True
 | ||
|         if not isinstance(other, Token):
 | ||
|             return False
 | ||
|         cdef Token other_token = other
 | ||
|         cdef Doc my_doc = self.doc
 | ||
|         cdef Doc other_doc = other_token.doc
 | ||
|         my = self.idx
 | ||
|         their = other_token.idx
 | ||
|         if op == 0:
 | ||
|             return my < their
 | ||
|         elif op == 2:
 | ||
|             if my_doc is other_doc:
 | ||
|                 return my == their
 | ||
|             else:
 | ||
|                 return False
 | ||
|         elif op == 4:
 | ||
|             return my > their
 | ||
|         elif op == 1:
 | ||
|             return my <= their
 | ||
|         elif op == 3:
 | ||
|             if my_doc is other_doc:
 | ||
|                 return my != their
 | ||
|             else:
 | ||
|                 return True
 | ||
|         elif op == 5:
 | ||
|             return my >= their
 | ||
|         else:
 | ||
|             raise ValueError(Errors.E041.format(op=op))
 | ||
| 
 | ||
|     def __reduce__(self):
 | ||
|         raise NotImplementedError(Errors.E111)
 | ||
| 
 | ||
|     @property
 | ||
|     def _(self):
 | ||
|         """Custom extension attributes registered via `set_extension`."""
 | ||
|         return Underscore(Underscore.token_extensions, self,
 | ||
|                           start=self.idx, end=None)
 | ||
| 
 | ||
|     cpdef bint check_flag(self, attr_id_t flag_id) except -1:
 | ||
|         """Check the value of a boolean flag.
 | ||
| 
 | ||
|         flag_id (int): The ID of the flag attribute.
 | ||
|         RETURNS (bool): Whether the flag is set.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#check_flag
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, flag_id)
 | ||
| 
 | ||
|     def nbor(self, int i=1):
 | ||
|         """Get a neighboring token.
 | ||
| 
 | ||
|         i (int): The relative position of the token to get. Defaults to 1.
 | ||
|         RETURNS (Token): The token at position `self.doc[self.i+i]`.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#nbor
 | ||
|         """
 | ||
|         if self.i+i < 0 or (self.i+i >= len(self.doc)):
 | ||
|             raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
 | ||
|         return self.doc[self.i+i]
 | ||
| 
 | ||
|     def similarity(self, other):
 | ||
|         """Make a semantic similarity estimate. The default estimate is cosine
 | ||
|         similarity using an average of word vectors.
 | ||
| 
 | ||
|         other (object): The object to compare with. By default, accepts `Doc`,
 | ||
|             `Span`, `Token` and `Lexeme` objects.
 | ||
|         RETURNS (float): A scalar similarity score. Higher is more similar.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#similarity
 | ||
|         """
 | ||
|         if "similarity" in self.doc.user_token_hooks:
 | ||
|             return self.doc.user_token_hooks["similarity"](self, other)
 | ||
|         attr = getattr(self.doc.vocab.vectors, "attr", ORTH)
 | ||
|         cdef Token this_token = self
 | ||
|         cdef Token other_token
 | ||
|         cdef Lexeme other_lex
 | ||
|         if isinstance(other, Token):
 | ||
|             other_token = other
 | ||
|             if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr):
 | ||
|                 return 1.0
 | ||
|         elif isinstance(other, Lexeme):
 | ||
|             other_lex = other
 | ||
|             if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr):
 | ||
|                 return 1.0
 | ||
|         if self.vocab.vectors.n_keys == 0:
 | ||
|             warnings.warn(Warnings.W007.format(obj="Token"))
 | ||
|         if self.vector_norm == 0 or other.vector_norm == 0:
 | ||
|             if not self.has_vector or not other.has_vector:
 | ||
|                 warnings.warn(Warnings.W008.format(obj="Token"))
 | ||
|             return 0.0
 | ||
|         vector = self.vector
 | ||
|         xp = get_array_module(vector)
 | ||
|         result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
 | ||
|         # ensure we get a scalar back (numpy does this automatically but cupy doesn't)
 | ||
|         return result.item()
 | ||
| 
 | ||
|     def has_morph(self):
 | ||
|         """Check whether the token has annotated morph information.
 | ||
|         Return False when the morph annotation is unset/missing.
 | ||
| 
 | ||
|         RETURNS (bool): Whether the morph annotation is set.
 | ||
|         """
 | ||
|         return not self.c.morph == 0
 | ||
| 
 | ||
|     @property
 | ||
|     def morph(self):
 | ||
|         return MorphAnalysis.from_id(self.vocab, self.c.morph)
 | ||
| 
 | ||
|     @morph.setter
 | ||
|     def morph(self, MorphAnalysis morph):
 | ||
|         # Check that the morph has the same vocab
 | ||
|         if self.vocab != morph.vocab:
 | ||
|             raise ValueError(Errors.E1013)
 | ||
|         self.c.morph = morph.c.key
 | ||
| 
 | ||
|     def set_morph(self, features):
 | ||
|         cdef hash_t key
 | ||
|         if features is None:
 | ||
|             self.c.morph = 0
 | ||
|         elif isinstance(features, MorphAnalysis):
 | ||
|             self.morph = features
 | ||
|         else:
 | ||
|             if isinstance(features, int):
 | ||
|                 features = self.vocab.strings[features]
 | ||
|             key = self.vocab.morphology.add(features)
 | ||
|             self.c.morph = key
 | ||
| 
 | ||
|     @property
 | ||
|     def lex(self):
 | ||
|         """RETURNS (Lexeme): The underlying lexeme."""
 | ||
|         return self.vocab[self.c.lex.orth]
 | ||
| 
 | ||
|     @property
 | ||
|     def lex_id(self):
 | ||
|         """RETURNS (int): Sequential ID of the token's lexical type."""
 | ||
|         return self.c.lex.id
 | ||
| 
 | ||
|     @property
 | ||
|     def rank(self):
 | ||
|         """RETURNS (int): Sequential ID of the token's lexical type, used to
 | ||
|         index into tables, e.g. for word vectors."""
 | ||
|         return self.c.lex.id
 | ||
| 
 | ||
|     @property
 | ||
|     def text(self):
 | ||
|         """RETURNS (str): The original verbatim text of the token."""
 | ||
|         return self.orth_
 | ||
| 
 | ||
|     @property
 | ||
|     def text_with_ws(self):
 | ||
|         """RETURNS (str): The text content of the span (with trailing
 | ||
|             whitespace).
 | ||
|         """
 | ||
|         cdef str orth = self.vocab.strings[self.c.lex.orth]
 | ||
|         if self.c.spacy:
 | ||
|             return orth + " "
 | ||
|         else:
 | ||
|             return orth
 | ||
| 
 | ||
|     @property
 | ||
|     def prob(self):
 | ||
|         """RETURNS (float): Smoothed log probability estimate of token type."""
 | ||
|         return self.vocab[self.c.lex.orth].prob
 | ||
| 
 | ||
|     @property
 | ||
|     def sentiment(self):
 | ||
|         """RETURNS (float): A scalar value indicating the positivity or
 | ||
|             negativity of the token."""
 | ||
|         if "sentiment" in self.doc.user_token_hooks:
 | ||
|             return self.doc.user_token_hooks["sentiment"](self)
 | ||
|         return self.vocab[self.c.lex.orth].sentiment
 | ||
| 
 | ||
|     @property
 | ||
|     def lang(self):
 | ||
|         """RETURNS (uint64): ID of the language of the parent document's
 | ||
|             vocabulary.
 | ||
|         """
 | ||
|         return self.c.lex.lang
 | ||
| 
 | ||
|     @property
 | ||
|     def idx(self):
 | ||
|         """RETURNS (int): The character offset of the token within the parent
 | ||
|             document.
 | ||
|         """
 | ||
|         return self.c.idx
 | ||
| 
 | ||
|     @property
 | ||
|     def cluster(self):
 | ||
|         """RETURNS (int): Brown cluster ID."""
 | ||
|         return self.vocab[self.c.lex.orth].cluster
 | ||
| 
 | ||
|     @property
 | ||
|     def orth(self):
 | ||
|         """RETURNS (uint64): ID of the verbatim text content."""
 | ||
|         return self.c.lex.orth
 | ||
| 
 | ||
|     @property
 | ||
|     def lower(self):
 | ||
|         """RETURNS (uint64): ID of the lowercase token text."""
 | ||
|         return self.c.lex.lower
 | ||
| 
 | ||
|     @property
 | ||
|     def norm(self):
 | ||
|         """RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
 | ||
|             the token text. Usually set in the language's tokenizer exceptions
 | ||
|             or norm exceptions.
 | ||
|         """
 | ||
|         if self.c.norm == 0:
 | ||
|             return self.c.lex.norm
 | ||
|         else:
 | ||
|             return self.c.norm
 | ||
| 
 | ||
|     @property
 | ||
|     def shape(self):
 | ||
|         """RETURNS (uint64): ID of the token's shape, a transform of the
 | ||
|             token's string, to show orthographic features (e.g. "Xxxx", "dd").
 | ||
|         """
 | ||
|         return self.c.lex.shape
 | ||
| 
 | ||
|     @property
 | ||
|     def prefix(self):
 | ||
|         """RETURNS (uint64): ID of a length-N substring from the start of the
 | ||
|             token. Defaults to `N=1`.
 | ||
|         """
 | ||
|         return self.c.lex.prefix
 | ||
| 
 | ||
|     @property
 | ||
|     def suffix(self):
 | ||
|         """RETURNS (uint64): ID of a length-N substring from the end of the
 | ||
|             token. Defaults to `N=3`.
 | ||
|         """
 | ||
|         return self.c.lex.suffix
 | ||
| 
 | ||
|     @property
 | ||
|     def lemma(self):
 | ||
|         """RETURNS (uint64): ID of the base form of the word, with no
 | ||
|             inflectional suffixes.
 | ||
|         """
 | ||
|         return self.c.lemma
 | ||
| 
 | ||
|     @lemma.setter
 | ||
|     def lemma(self, attr_t lemma):
 | ||
|         self.c.lemma = lemma
 | ||
| 
 | ||
|     @property
 | ||
|     def pos(self):
 | ||
|         """RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
 | ||
|         return self.c.pos
 | ||
| 
 | ||
|     @pos.setter
 | ||
|     def pos(self, pos):
 | ||
|         self.c.pos = pos
 | ||
| 
 | ||
|     @property
 | ||
|     def tag(self):
 | ||
|         """RETURNS (uint64): ID of fine-grained part-of-speech tag."""
 | ||
|         return self.c.tag
 | ||
| 
 | ||
|     @tag.setter
 | ||
|     def tag(self, attr_t tag):
 | ||
|         self.c.tag = tag
 | ||
| 
 | ||
|     @property
 | ||
|     def dep(self):
 | ||
|         """RETURNS (uint64): ID of syntactic dependency label."""
 | ||
|         return self.c.dep
 | ||
| 
 | ||
|     @dep.setter
 | ||
|     def dep(self, attr_t label):
 | ||
|         self.c.dep = label
 | ||
| 
 | ||
|     @property
 | ||
|     def has_vector(self):
 | ||
|         """A boolean value indicating whether a word vector is associated with
 | ||
|         the object.
 | ||
| 
 | ||
|         RETURNS (bool): Whether a word vector is associated with the object.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#has_vector
 | ||
|         """
 | ||
|         if "has_vector" in self.doc.user_token_hooks:
 | ||
|             return self.doc.user_token_hooks["has_vector"](self)
 | ||
|         if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
 | ||
|             return True
 | ||
|         return self.vocab.has_vector(Token.get_struct_attr(self.c, self.vocab.vectors.attr))
 | ||
| 
 | ||
|     @property
 | ||
|     def vector(self):
 | ||
|         """A real-valued meaning representation.
 | ||
| 
 | ||
|         RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
 | ||
|             representing the token's semantics.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#vector
 | ||
|         """
 | ||
|         if "vector" in self.doc.user_token_hooks:
 | ||
|             return self.doc.user_token_hooks["vector"](self)
 | ||
|         if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
 | ||
|             return self.doc.tensor[self.i]
 | ||
|         else:
 | ||
|             return self.vocab.get_vector(Token.get_struct_attr(self.c, self.vocab.vectors.attr))
 | ||
| 
 | ||
|     @property
 | ||
|     def vector_norm(self):
 | ||
|         """The L2 norm of the token's vector representation.
 | ||
| 
 | ||
|         RETURNS (float): The L2 norm of the vector representation.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#vector_norm
 | ||
|         """
 | ||
|         if "vector_norm" in self.doc.user_token_hooks:
 | ||
|             return self.doc.user_token_hooks["vector_norm"](self)
 | ||
|         vector = self.vector
 | ||
|         xp = get_array_module(vector)
 | ||
|         total = (vector ** 2).sum()
 | ||
|         return xp.sqrt(total) if total != 0. else 0.
 | ||
| 
 | ||
|     @property
 | ||
|     def tensor(self):
 | ||
|         if self.doc.tensor is None:
 | ||
|             return None
 | ||
|         return self.doc.tensor[self.i]
 | ||
| 
 | ||
|     @property
 | ||
|     def n_lefts(self):
 | ||
|         """The number of leftward immediate children of the word, in the
 | ||
|         syntactic dependency parse.
 | ||
| 
 | ||
|         RETURNS (int): The number of leftward immediate children of the
 | ||
|             word, in the syntactic dependency parse.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#n_lefts
 | ||
|         """
 | ||
|         return self.c.l_kids
 | ||
| 
 | ||
|     @property
 | ||
|     def n_rights(self):
 | ||
|         """The number of rightward immediate children of the word, in the
 | ||
|         syntactic dependency parse.
 | ||
| 
 | ||
|         RETURNS (int): The number of rightward immediate children of the
 | ||
|             word, in the syntactic dependency parse.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#n_rights
 | ||
|         """
 | ||
|         return self.c.r_kids
 | ||
| 
 | ||
|     @property
 | ||
|     def sent(self):
 | ||
|         """RETURNS (Span): The sentence span that the token is a part of."""
 | ||
|         if 'sent' in self.doc.user_token_hooks:
 | ||
|             return self.doc.user_token_hooks["sent"](self)
 | ||
|         return self.doc[self.i : self.i+1].sent
 | ||
| 
 | ||
|     @property
 | ||
|     def sent_start(self):
 | ||
|         """Deprecated: use Token.is_sent_start instead."""
 | ||
|         # Raising a deprecation warning here causes errors for autocomplete
 | ||
|         # Handle broken backwards compatibility case: doc[0].sent_start
 | ||
|         # was False.
 | ||
|         if self.i == 0:
 | ||
|             return False
 | ||
|         else:
 | ||
|             return self.c.sent_start
 | ||
| 
 | ||
|     @sent_start.setter
 | ||
|     def sent_start(self, value):
 | ||
|         self.is_sent_start = value
 | ||
| 
 | ||
|     @property
 | ||
|     def is_sent_start(self):
 | ||
|         """A boolean value indicating whether the token starts a sentence.
 | ||
|         `None` if unknown. Defaults to `True` for the first token in the `Doc`.
 | ||
| 
 | ||
|         RETURNS (bool / None): Whether the token starts a sentence.
 | ||
|             None if unknown.
 | ||
|         """
 | ||
|         if self.c.sent_start == 0:
 | ||
|             return None
 | ||
|         elif self.c.sent_start < 0:
 | ||
|             return False
 | ||
|         else:
 | ||
|             return True
 | ||
| 
 | ||
|     @is_sent_start.setter
 | ||
|     def is_sent_start(self, value):
 | ||
|         if self.doc.has_annotation("DEP"):
 | ||
|             raise ValueError(Errors.E043)
 | ||
|         if value is None:
 | ||
|             self.c.sent_start = 0
 | ||
|         elif value is True:
 | ||
|             self.c.sent_start = 1
 | ||
|         elif value is False:
 | ||
|             self.c.sent_start = -1
 | ||
|         else:
 | ||
|             raise ValueError(Errors.E044.format(value=value))
 | ||
| 
 | ||
|     @property
 | ||
|     def is_sent_end(self):
 | ||
|         """A boolean value indicating whether the token ends a sentence.
 | ||
|         `None` if unknown. Defaults to `True` for the last token in the `Doc`.
 | ||
| 
 | ||
|         RETURNS (bool / None): Whether the token ends a sentence.
 | ||
|             None if unknown.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#is_sent_end
 | ||
|         """
 | ||
|         if self.i + 1 == len(self.doc):
 | ||
|             return True
 | ||
|         elif self.doc[self.i+1].is_sent_start is None:
 | ||
|             return None
 | ||
|         elif self.doc[self.i+1].is_sent_start is True:
 | ||
|             return True
 | ||
|         else:
 | ||
|             return False
 | ||
| 
 | ||
|     @is_sent_end.setter
 | ||
|     def is_sent_end(self, value):
 | ||
|         raise ValueError(Errors.E196)
 | ||
| 
 | ||
|     @property
 | ||
|     def lefts(self):
 | ||
|         """The leftward immediate children of the word, in the syntactic
 | ||
|         dependency parse.
 | ||
| 
 | ||
|         YIELDS (Token): A left-child of the token.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#lefts
 | ||
|         """
 | ||
|         cdef int nr_iter = 0
 | ||
|         cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
 | ||
|         while ptr < self.c:
 | ||
|             if ptr + ptr.head == self.c:
 | ||
|                 yield self.doc[ptr - (self.c - self.i)]
 | ||
|             ptr += 1
 | ||
|             nr_iter += 1
 | ||
|             # This is ugly, but it's a way to guard out infinite loops
 | ||
|             if nr_iter >= 10000000:
 | ||
|                 raise RuntimeError(Errors.E045.format(attr="token.lefts"))
 | ||
| 
 | ||
|     @property
 | ||
|     def rights(self):
 | ||
|         """The rightward immediate children of the word, in the syntactic
 | ||
|         dependency parse.
 | ||
| 
 | ||
|         YIELDS (Token): A right-child of the token.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#rights
 | ||
|         """
 | ||
|         cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
 | ||
|         tokens = []
 | ||
|         cdef int nr_iter = 0
 | ||
|         while ptr > self.c:
 | ||
|             if ptr + ptr.head == self.c:
 | ||
|                 tokens.append(self.doc[ptr - (self.c - self.i)])
 | ||
|             ptr -= 1
 | ||
|             nr_iter += 1
 | ||
|             if nr_iter >= 10000000:
 | ||
|                 raise RuntimeError(Errors.E045.format(attr="token.rights"))
 | ||
|         tokens.reverse()
 | ||
|         for t in tokens:
 | ||
|             yield t
 | ||
| 
 | ||
|     @property
 | ||
|     def children(self):
 | ||
|         """A sequence of the token's immediate syntactic children.
 | ||
| 
 | ||
|         YIELDS (Token): A child token such that `child.head==self`.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#children
 | ||
|         """
 | ||
|         yield from self.lefts
 | ||
|         yield from self.rights
 | ||
| 
 | ||
|     @property
 | ||
|     def subtree(self):
 | ||
|         """A sequence containing the token and all the token's syntactic
 | ||
|         descendants.
 | ||
| 
 | ||
|         YIELDS (Token): A descendent token such that
 | ||
|             `self.is_ancestor(descendent) or token == self`.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#subtree
 | ||
|         """
 | ||
|         for word in self.lefts:
 | ||
|             yield from word.subtree
 | ||
|         yield self
 | ||
|         for word in self.rights:
 | ||
|             yield from word.subtree
 | ||
| 
 | ||
|     @property
 | ||
|     def left_edge(self) -> int:
 | ||
|         """The leftmost token of this token's syntactic descendents.
 | ||
| 
 | ||
|         RETURNS (Token): The first token such that `self.is_ancestor(token)`.
 | ||
|         """
 | ||
|         return self.doc[self.c.l_edge]
 | ||
| 
 | ||
|     @property
 | ||
|     def right_edge(self) -> int:
 | ||
|         """The rightmost token of this token's syntactic descendents.
 | ||
| 
 | ||
|         RETURNS (Token): The last token such that `self.is_ancestor(token)`.
 | ||
|         """
 | ||
|         return self.doc[self.c.r_edge]
 | ||
| 
 | ||
|     @property
 | ||
|     def ancestors(self):
 | ||
|         """A sequence of this token's syntactic ancestors.
 | ||
| 
 | ||
|         YIELDS (Token): A sequence of ancestor tokens such that
 | ||
|             `ancestor.is_ancestor(self)`.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#ancestors
 | ||
|         """
 | ||
|         cdef const TokenC* head_ptr = self.c
 | ||
|         # Guard against infinite loop, no token can have
 | ||
|         # more ancestors than tokens in the tree.
 | ||
|         cdef int i = 0
 | ||
|         while head_ptr.head != 0 and i < self.doc.length:
 | ||
|             head_ptr += head_ptr.head
 | ||
|             yield self.doc[head_ptr - (self.c - self.i)]
 | ||
|             i += 1
 | ||
| 
 | ||
|     def is_ancestor(self, descendant):
 | ||
|         """Check whether this token is a parent, grandparent, etc. of another
 | ||
|         in the dependency tree.
 | ||
| 
 | ||
|         descendant (Token): Another token.
 | ||
|         RETURNS (bool): Whether this token is the ancestor of the descendant.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#is_ancestor
 | ||
|         """
 | ||
|         if self.doc is not descendant.doc:
 | ||
|             return False
 | ||
|         return any(ancestor.i == self.i for ancestor in descendant.ancestors)
 | ||
| 
 | ||
|     def has_head(self):
 | ||
|         """Check whether the token has annotated head information.
 | ||
|         Return False when the head annotation is unset/missing.
 | ||
| 
 | ||
|         RETURNS (bool): Whether the head annotation is valid or not.
 | ||
|         """
 | ||
|         return not Token.missing_head(self.c)
 | ||
| 
 | ||
|     @property
 | ||
|     def head(self):
 | ||
|         """The syntactic parent, or "governor", of this token.
 | ||
|         If token.has_head() is `False`, this method will return itself.
 | ||
| 
 | ||
|         RETURNS (Token): The token predicted by the parser to be the head of
 | ||
|             the current token.
 | ||
|         """
 | ||
|         if not self.has_head():
 | ||
|             return self
 | ||
|         else:
 | ||
|             return self.doc[self.i + self.c.head]
 | ||
| 
 | ||
|     @head.setter
 | ||
|     def head(self, Token new_head):
 | ||
|         # This function sets the head of self to new_head and updates the
 | ||
|         # counters for left/right dependents and left/right corner for the
 | ||
|         # new and the old head
 | ||
|         # Check that token is from the same document
 | ||
|         if self.doc != new_head.doc:
 | ||
|             raise ValueError(Errors.E191)
 | ||
|         # Do nothing if old head is new head
 | ||
|         if self.i + self.c.head == new_head.i:
 | ||
|             return
 | ||
|         # Find the widest l/r_edges of the roots of the two tokens involved
 | ||
|         # to limit the number of tokens for set_children_from_heads
 | ||
|         cdef Token self_root, new_head_root
 | ||
|         self_root = ([self] + list(self.ancestors))[-1]
 | ||
|         new_head_ancestors = list(new_head.ancestors)
 | ||
|         new_head_root = new_head_ancestors[-1] if new_head_ancestors else new_head
 | ||
|         start = self_root.c.l_edge if self_root.c.l_edge < new_head_root.c.l_edge else new_head_root.c.l_edge
 | ||
|         end = self_root.c.r_edge if self_root.c.r_edge > new_head_root.c.r_edge else new_head_root.c.r_edge
 | ||
|         # Set new head
 | ||
|         self.c.head = new_head.i - self.i
 | ||
|         # Adjust parse properties and sentence starts
 | ||
|         set_children_from_heads(self.doc.c, start, end + 1)
 | ||
| 
 | ||
|     @property
 | ||
|     def conjuncts(self):
 | ||
|         """A sequence of coordinated tokens, including the token itself.
 | ||
| 
 | ||
|         RETURNS (tuple): The coordinated tokens.
 | ||
| 
 | ||
|         DOCS: https://spacy.io/api/token#conjuncts
 | ||
|         """
 | ||
|         cdef Token word, child
 | ||
|         if "conjuncts" in self.doc.user_token_hooks:
 | ||
|             return tuple(self.doc.user_token_hooks["conjuncts"](self))
 | ||
|         start = self
 | ||
|         while start.i != start.head.i:
 | ||
|             if start.dep == conj:
 | ||
|                 start = start.head
 | ||
|             else:
 | ||
|                 break
 | ||
|         queue = [start]
 | ||
|         output = [start]
 | ||
|         for word in queue:
 | ||
|             for child in word.rights:
 | ||
|                 if child.c.dep == conj:
 | ||
|                     output.append(child)
 | ||
|                     queue.append(child)
 | ||
|         return tuple([w for w in output if w.i != self.i])
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_type(self):
 | ||
|         """RETURNS (uint64): Named entity type."""
 | ||
|         return self.c.ent_type
 | ||
| 
 | ||
|     @ent_type.setter
 | ||
|     def ent_type(self, ent_type):
 | ||
|         self.c.ent_type = ent_type
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_type_(self):
 | ||
|         """RETURNS (str): Named entity type."""
 | ||
|         return self.vocab.strings[self.c.ent_type]
 | ||
| 
 | ||
|     @ent_type_.setter
 | ||
|     def ent_type_(self, ent_type):
 | ||
|         self.c.ent_type = self.vocab.strings.add(ent_type)
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_iob(self):
 | ||
|         """IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
 | ||
|         is assigned.
 | ||
| 
 | ||
|         RETURNS (uint64): IOB code of named entity tag.
 | ||
|         """
 | ||
|         return self.c.ent_iob
 | ||
| 
 | ||
|     @classmethod
 | ||
|     def iob_strings(cls):
 | ||
|         return IOB_STRINGS
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_iob_(self):
 | ||
|         """IOB code of named entity tag. "B" means the token begins an entity,
 | ||
|         "I" means it is inside an entity, "O" means it is outside an entity,
 | ||
|         and "" means no entity tag is set. "B" with an empty ent_type
 | ||
|         means that the token is blocked from further processing by NER.
 | ||
| 
 | ||
|         RETURNS (str): IOB code of named entity tag.
 | ||
|         """
 | ||
|         return self.iob_strings()[self.c.ent_iob]
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_id(self):
 | ||
|         """RETURNS (uint64): ID of the entity the token is an instance of,
 | ||
|             if any.
 | ||
|         """
 | ||
|         return self.c.ent_id
 | ||
| 
 | ||
|     @ent_id.setter
 | ||
|     def ent_id(self, hash_t key):
 | ||
|         self.c.ent_id = key
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_id_(self):
 | ||
|         """RETURNS (str): ID of the entity the token is an instance of,
 | ||
|             if any.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.ent_id]
 | ||
| 
 | ||
|     @ent_id_.setter
 | ||
|     def ent_id_(self, name):
 | ||
|         self.c.ent_id = self.vocab.strings.add(name)
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_kb_id(self):
 | ||
|         """RETURNS (uint64): Named entity KB ID."""
 | ||
|         return self.c.ent_kb_id
 | ||
| 
 | ||
|     @ent_kb_id.setter
 | ||
|     def ent_kb_id(self, attr_t ent_kb_id):
 | ||
|         self.c.ent_kb_id = ent_kb_id
 | ||
| 
 | ||
|     @property
 | ||
|     def ent_kb_id_(self):
 | ||
|         """RETURNS (str): Named entity KB ID."""
 | ||
|         return self.vocab.strings[self.c.ent_kb_id]
 | ||
| 
 | ||
|     @ent_kb_id_.setter
 | ||
|     def ent_kb_id_(self, ent_kb_id):
 | ||
|         self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
 | ||
| 
 | ||
|     @property
 | ||
|     def whitespace_(self):
 | ||
|         """RETURNS (str): The trailing whitespace character, if present."""
 | ||
|         return " " if self.c.spacy else ""
 | ||
| 
 | ||
|     @property
 | ||
|     def orth_(self):
 | ||
|         """RETURNS (str): Verbatim text content (identical to
 | ||
|             `Token.text`). Exists mostly for consistency with the other
 | ||
|             attributes.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lex.orth]
 | ||
| 
 | ||
|     @property
 | ||
|     def lower_(self):
 | ||
|         """RETURNS (str): The lowercase token text. Equivalent to
 | ||
|             `Token.text.lower()`.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lex.lower]
 | ||
| 
 | ||
|     @property
 | ||
|     def norm_(self):
 | ||
|         """RETURNS (str): The token's norm, i.e. a normalised form of the
 | ||
|             token text. Usually set in the language's tokenizer exceptions or
 | ||
|             norm exceptions.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.norm]
 | ||
| 
 | ||
|     @norm_.setter
 | ||
|     def norm_(self, str norm_):
 | ||
|         self.c.norm = self.vocab.strings.add(norm_)
 | ||
| 
 | ||
|     @property
 | ||
|     def shape_(self):
 | ||
|         """RETURNS (str): Transform of the token's string, to show
 | ||
|             orthographic features. For example, "Xxxx" or "dd".
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lex.shape]
 | ||
| 
 | ||
|     @property
 | ||
|     def prefix_(self):
 | ||
|         """RETURNS (str): A length-N substring from the start of the token.
 | ||
|             Defaults to `N=1`.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lex.prefix]
 | ||
| 
 | ||
|     @property
 | ||
|     def suffix_(self):
 | ||
|         """RETURNS (str): A length-N substring from the end of the token.
 | ||
|             Defaults to `N=3`.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lex.suffix]
 | ||
| 
 | ||
|     @property
 | ||
|     def lang_(self):
 | ||
|         """RETURNS (str): Language of the parent document's vocabulary,
 | ||
|             e.g. 'en'.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lex.lang]
 | ||
| 
 | ||
|     @property
 | ||
|     def lemma_(self):
 | ||
|         """RETURNS (str): The token lemma, i.e. the base form of the word,
 | ||
|             with no inflectional suffixes.
 | ||
|         """
 | ||
|         return self.vocab.strings[self.c.lemma]
 | ||
| 
 | ||
|     @lemma_.setter
 | ||
|     def lemma_(self, str lemma_):
 | ||
|         self.c.lemma = self.vocab.strings.add(lemma_)
 | ||
| 
 | ||
|     @property
 | ||
|     def pos_(self):
 | ||
|         """RETURNS (str): Coarse-grained part-of-speech tag."""
 | ||
|         return parts_of_speech.NAMES[self.c.pos]
 | ||
| 
 | ||
|     @pos_.setter
 | ||
|     def pos_(self, pos_name):
 | ||
|         if pos_name not in parts_of_speech.IDS:
 | ||
|             raise ValueError(Errors.E1021.format(pp=pos_name))
 | ||
|         self.c.pos = parts_of_speech.IDS[pos_name]
 | ||
| 
 | ||
|     @property
 | ||
|     def tag_(self):
 | ||
|         """RETURNS (str): Fine-grained part-of-speech tag."""
 | ||
|         return self.vocab.strings[self.c.tag]
 | ||
| 
 | ||
|     @tag_.setter
 | ||
|     def tag_(self, tag):
 | ||
|         self.tag = self.vocab.strings.add(tag)
 | ||
| 
 | ||
|     def has_dep(self):
 | ||
|         """Check whether the token has annotated dep information.
 | ||
|         Returns False when the dep label is unset/missing.
 | ||
| 
 | ||
|         RETURNS (bool): Whether the dep label is valid or not.
 | ||
|         """
 | ||
|         return not Token.missing_dep(self.c)
 | ||
| 
 | ||
|     @property
 | ||
|     def dep_(self):
 | ||
|         """RETURNS (str): The syntactic dependency label."""
 | ||
|         return self.vocab.strings[self.c.dep]
 | ||
| 
 | ||
|     @dep_.setter
 | ||
|     def dep_(self, str label):
 | ||
|         self.c.dep = self.vocab.strings.add(label)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_oov(self):
 | ||
|         """RETURNS (bool): Whether the token is out-of-vocabulary."""
 | ||
|         return self.c.lex.orth not in self.vocab.vectors
 | ||
| 
 | ||
|     @property
 | ||
|     def is_stop(self):
 | ||
|         """RETURNS (bool): Whether the token is a stop word, i.e. part of a
 | ||
|             "stop list" defined by the language data.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_STOP)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_alpha(self):
 | ||
|         """RETURNS (bool): Whether the token consists of alpha characters.
 | ||
|             Equivalent to `token.text.isalpha()`.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_ascii(self):
 | ||
|         """RETURNS (bool): Whether the token consists of ASCII characters.
 | ||
|             Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_digit(self):
 | ||
|         """RETURNS (bool): Whether the token consists of digits. Equivalent to
 | ||
|             `token.text.isdigit()`.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_lower(self):
 | ||
|         """RETURNS (bool): Whether the token is in lowercase. Equivalent to
 | ||
|             `token.text.islower()`.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_upper(self):
 | ||
|         """RETURNS (bool): Whether the token is in uppercase. Equivalent to
 | ||
|             `token.text.isupper()`
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_title(self):
 | ||
|         """RETURNS (bool): Whether the token is in titlecase. Equivalent to
 | ||
|             `token.text.istitle()`.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_punct(self):
 | ||
|         """RETURNS (bool): Whether the token is punctuation."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_space(self):
 | ||
|         """RETURNS (bool): Whether the token consists of whitespace characters.
 | ||
|             Equivalent to `token.text.isspace()`.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_bracket(self):
 | ||
|         """RETURNS (bool): Whether the token is a bracket."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_quote(self):
 | ||
|         """RETURNS (bool): Whether the token is a quotation mark."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_left_punct(self):
 | ||
|         """RETURNS (bool): Whether the token is a left punctuation mark."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_right_punct(self):
 | ||
|         """RETURNS (bool): Whether the token is a right punctuation mark."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
 | ||
| 
 | ||
|     @property
 | ||
|     def is_currency(self):
 | ||
|         """RETURNS (bool): Whether the token is a currency symbol."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
 | ||
| 
 | ||
|     @property
 | ||
|     def like_url(self):
 | ||
|         """RETURNS (bool): Whether the token resembles a URL."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
 | ||
| 
 | ||
|     @property
 | ||
|     def like_num(self):
 | ||
|         """RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
 | ||
|             "10", "ten", etc.
 | ||
|         """
 | ||
|         return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
 | ||
| 
 | ||
|     @property
 | ||
|     def like_email(self):
 | ||
|         """RETURNS (bool): Whether the token resembles an email address."""
 | ||
|         return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
 |