mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* add label smoothing * use True/False instead of floats * add entropy to debug data * formatting * docs * change test to check difference in distributions * Update website/docs/api/tagger.mdx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update spacy/pipeline/tagger.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * bool -> float * update docs * fix seed * black * update tests to use label_smoothing = 0.0 * set default to 0.0, update quickstart * Update spacy/pipeline/tagger.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * update morphologizer, tagger test * fix morph docs * add url to docs --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			602 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Django/Jinja
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Django/Jinja
		
	
	
	
	
	
| {# This is a template for training configs used for the quickstart widget in
 | |
| the docs and the init config command. It encodes various best practices and
 | |
| can help generate the best possible configuration, given a user's requirements. #}
 | |
| {%- set use_transformer = hardware != "cpu" and transformer_data -%}
 | |
| {%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
 | |
| {%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
 | |
| [paths]
 | |
| train = null
 | |
| dev = null
 | |
| {% if use_transformer or optimize == "efficiency" or not word_vectors -%}
 | |
| vectors = null
 | |
| {% else -%}
 | |
| vectors = "{{ word_vectors }}"
 | |
| {% endif -%}
 | |
| 
 | |
| [system]
 | |
| {% if use_transformer -%}
 | |
| gpu_allocator = "pytorch"
 | |
| {% else -%}
 | |
| gpu_allocator = null
 | |
| {% endif %}
 | |
| 
 | |
| [nlp]
 | |
| lang = "{{ lang }}"
 | |
| {%- set has_textcat = ("textcat" in components or "textcat_multilabel" in components) -%}
 | |
| {%- set with_accuracy = optimize == "accuracy" -%}
 | |
| {# The BOW textcat doesn't need a source of features, so it can omit the
 | |
| tok2vec/transformer. #}
 | |
| {%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
 | |
| {%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
 | |
| {%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
 | |
| {%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
 | |
| {%- else -%}
 | |
| {%- set full_pipeline = components -%}
 | |
| {%- endif %}
 | |
| pipeline = {{ full_pipeline|pprint()|replace("'", '"')|safe }}
 | |
| batch_size = {{ 128 if hardware == "gpu" else 1000 }}
 | |
| 
 | |
| [components]
 | |
| 
 | |
| {# TRANSFORMER PIPELINE #}
 | |
| {%- if use_transformer -%}
 | |
| [components.transformer]
 | |
| factory = "transformer"
 | |
| 
 | |
| [components.transformer.model]
 | |
| @architectures = "spacy-transformers.TransformerModel.v3"
 | |
| name = "{{ transformer["name"] }}"
 | |
| tokenizer_config = {"use_fast": true}
 | |
| 
 | |
| [components.transformer.model.get_spans]
 | |
| @span_getters = "spacy-transformers.strided_spans.v1"
 | |
| window = 128
 | |
| stride = 96
 | |
| 
 | |
| {% if "morphologizer" in components %}
 | |
| [components.morphologizer]
 | |
| factory = "morphologizer"
 | |
| 
 | |
| [components.morphologizer.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.morphologizer.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.morphologizer.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "tagger" in components %}
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.tagger.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "parser" in components -%}
 | |
| [components.parser]
 | |
| factory = "parser"
 | |
| 
 | |
| [components.parser.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v2"
 | |
| state_type = "parser"
 | |
| extra_state_tokens = false
 | |
| hidden_width = 128
 | |
| maxout_pieces = 3
 | |
| use_upper = false
 | |
| nO = null
 | |
| 
 | |
| [components.parser.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.parser.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "ner" in components -%}
 | |
| [components.ner]
 | |
| factory = "ner"
 | |
| 
 | |
| [components.ner.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v2"
 | |
| state_type = "ner"
 | |
| extra_state_tokens = false
 | |
| hidden_width = 64
 | |
| maxout_pieces = 2
 | |
| use_upper = false
 | |
| nO = null
 | |
| 
 | |
| [components.ner.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.ner.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {% endif -%}
 | |
| 
 | |
| {% if "spancat" in components -%}
 | |
| [components.spancat]
 | |
| factory = "spancat"
 | |
| max_positive = null
 | |
| scorer = {"@scorers":"spacy.spancat_scorer.v1"}
 | |
| spans_key = "sc"
 | |
| threshold = 0.5
 | |
| 
 | |
| [components.spancat.model]
 | |
| @architectures = "spacy.SpanCategorizer.v1"
 | |
| 
 | |
| [components.spancat.model.reducer]
 | |
| @layers = "spacy.mean_max_reducer.v1"
 | |
| hidden_size = 128
 | |
| 
 | |
| [components.spancat.model.scorer]
 | |
| @layers = "spacy.LinearLogistic.v1"
 | |
| nO = null
 | |
| nI = null
 | |
| 
 | |
| [components.spancat.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.spancat.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| 
 | |
| [components.spancat.suggester]
 | |
| @misc = "spacy.ngram_suggester.v1"
 | |
| sizes = [1,2,3]
 | |
| {% endif -%}
 | |
| 
 | |
| {% if "spancat_singlelabel" in components %}
 | |
| [components.spancat_singlelabel]
 | |
| factory = "spancat_singlelabel"
 | |
| negative_weight = 1.0
 | |
| allow_overlap = true
 | |
| scorer = {"@scorers":"spacy.spancat_scorer.v1"}
 | |
| spans_key = "sc"
 | |
| 
 | |
| [components.spancat_singlelabel.model]
 | |
| @architectures = "spacy.SpanCategorizer.v1"
 | |
| 
 | |
| [components.spancat_singlelabel.model.reducer]
 | |
| @layers = "spacy.mean_max_reducer.v1"
 | |
| hidden_size = 128
 | |
| 
 | |
| [components.spancat_singlelabel.model.scorer]
 | |
| @layers = "Softmax.v2"
 | |
| 
 | |
| [components.spancat_singlelabel.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.spancat_singlelabel.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| 
 | |
| [components.spancat_singlelabel.suggester]
 | |
| @misc = "spacy.ngram_suggester.v1"
 | |
| sizes = [1,2,3]
 | |
| {% endif %}
 | |
| 
 | |
| {% if "trainable_lemmatizer" in components -%}
 | |
| [components.trainable_lemmatizer]
 | |
| factory = "trainable_lemmatizer"
 | |
| backoff = "orth"
 | |
| min_tree_freq = 3
 | |
| overwrite = false
 | |
| scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
 | |
| top_k = 1
 | |
| 
 | |
| [components.trainable_lemmatizer.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| normalize = false
 | |
| 
 | |
| [components.trainable_lemmatizer.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.trainable_lemmatizer.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {% endif -%}
 | |
| 
 | |
| {% if "entity_linker" in components -%}
 | |
| [components.entity_linker]
 | |
| factory = "entity_linker"
 | |
| get_candidates = {"@misc":"spacy.CandidateGenerator.v1"}
 | |
| incl_context = true
 | |
| incl_prior = true
 | |
| 
 | |
| [components.entity_linker.model]
 | |
| @architectures = "spacy.EntityLinker.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.entity_linker.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.entity_linker.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {% endif -%}
 | |
| 
 | |
| {% if "textcat" in components %}
 | |
| [components.textcat]
 | |
| factory = "textcat"
 | |
| 
 | |
| {% if optimize == "accuracy" %}
 | |
| [components.textcat.model]
 | |
| @architectures = "spacy.TextCatEnsemble.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.textcat.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.textcat.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| 
 | |
| [components.textcat.model.linear_model]
 | |
| @architectures = "spacy.TextCatBOW.v2"
 | |
| exclusive_classes = true
 | |
| ngram_size = 1
 | |
| no_output_layer = false
 | |
| 
 | |
| {% else -%}
 | |
| [components.textcat.model]
 | |
| @architectures = "spacy.TextCatCNN.v2"
 | |
| exclusive_classes = true
 | |
| nO = null
 | |
| 
 | |
| [components.textcat.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.textcat.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {%- endif %}
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "textcat_multilabel" in components %}
 | |
| [components.textcat_multilabel]
 | |
| factory = "textcat_multilabel"
 | |
| 
 | |
| {% if optimize == "accuracy" %}
 | |
| [components.textcat_multilabel.model]
 | |
| @architectures = "spacy.TextCatEnsemble.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.textcat_multilabel.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.textcat_multilabel.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| 
 | |
| [components.textcat_multilabel.model.linear_model]
 | |
| @architectures = "spacy.TextCatBOW.v2"
 | |
| exclusive_classes = false
 | |
| ngram_size = 1
 | |
| no_output_layer = false
 | |
| 
 | |
| {% else -%}
 | |
| [components.textcat_multilabel.model]
 | |
| @architectures = "spacy.TextCatCNN.v2"
 | |
| exclusive_classes = false
 | |
| nO = null
 | |
| 
 | |
| [components.textcat_multilabel.model.tok2vec]
 | |
| @architectures = "spacy-transformers.TransformerListener.v1"
 | |
| grad_factor = 1.0
 | |
| 
 | |
| [components.textcat_multilabel.model.tok2vec.pooling]
 | |
| @layers = "reduce_mean.v1"
 | |
| {%- endif %}
 | |
| {%- endif %}
 | |
| 
 | |
| {# NON-TRANSFORMER PIPELINE #}
 | |
| {% else -%}
 | |
| {% if "tok2vec" in full_pipeline -%}
 | |
| [components.tok2vec]
 | |
| factory = "tok2vec"
 | |
| 
 | |
| [components.tok2vec.model]
 | |
| @architectures = "spacy.Tok2Vec.v2"
 | |
| 
 | |
| [components.tok2vec.model.embed]
 | |
| @architectures = "spacy.MultiHashEmbed.v2"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
 | |
| rows = [5000, 1000, 2500, 2500]
 | |
| include_static_vectors = {{ "true" if optimize == "accuracy" else "false" }}
 | |
| 
 | |
| [components.tok2vec.model.encode]
 | |
| @architectures = "spacy.MaxoutWindowEncoder.v2"
 | |
| width = {{ 96 if optimize == "efficiency" else 256 }}
 | |
| depth = {{ 4 if optimize == "efficiency" else 8 }}
 | |
| window_size = 1
 | |
| maxout_pieces = 3
 | |
| {% endif -%}
 | |
| 
 | |
| {% if "morphologizer" in components %}
 | |
| [components.morphologizer]
 | |
| factory = "morphologizer"
 | |
| label_smoothing = 0.05
 | |
| 
 | |
| [components.morphologizer.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.morphologizer.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "tagger" in components %}
 | |
| [components.tagger]
 | |
| factory = "tagger"
 | |
| label_smoothing = 0.05
 | |
| 
 | |
| [components.tagger.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.tagger.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "parser" in components -%}
 | |
| [components.parser]
 | |
| factory = "parser"
 | |
| 
 | |
| [components.parser.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v2"
 | |
| state_type = "parser"
 | |
| extra_state_tokens = false
 | |
| hidden_width = 128
 | |
| maxout_pieces = 3
 | |
| use_upper = true
 | |
| nO = null
 | |
| 
 | |
| [components.parser.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "ner" in components %}
 | |
| [components.ner]
 | |
| factory = "ner"
 | |
| 
 | |
| [components.ner.model]
 | |
| @architectures = "spacy.TransitionBasedParser.v2"
 | |
| state_type = "ner"
 | |
| extra_state_tokens = false
 | |
| hidden_width = 64
 | |
| maxout_pieces = 2
 | |
| use_upper = true
 | |
| nO = null
 | |
| 
 | |
| [components.ner.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| {% endif %}
 | |
| 
 | |
| {% if "spancat" in components %}
 | |
| [components.spancat]
 | |
| factory = "spancat"
 | |
| max_positive = null
 | |
| scorer = {"@scorers":"spacy.spancat_scorer.v1"}
 | |
| spans_key = "sc"
 | |
| threshold = 0.5
 | |
| 
 | |
| [components.spancat.model]
 | |
| @architectures = "spacy.SpanCategorizer.v1"
 | |
| 
 | |
| [components.spancat.model.reducer]
 | |
| @layers = "spacy.mean_max_reducer.v1"
 | |
| hidden_size = 128
 | |
| 
 | |
| [components.spancat.model.scorer]
 | |
| @layers = "spacy.LinearLogistic.v1"
 | |
| nO = null
 | |
| nI = null
 | |
| 
 | |
| [components.spancat.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| 
 | |
| [components.spancat.suggester]
 | |
| @misc = "spacy.ngram_suggester.v1"
 | |
| sizes = [1,2,3]
 | |
| {% endif %}
 | |
| 
 | |
| {% if "spancat_singlelabel" in components %}
 | |
| [components.spancat_singlelabel]
 | |
| factory = "spancat_singlelabel"
 | |
| negative_weight = 1.0
 | |
| allow_overlap = true
 | |
| scorer = {"@scorers":"spacy.spancat_scorer.v1"}
 | |
| spans_key = "sc"
 | |
| 
 | |
| [components.spancat_singlelabel.model]
 | |
| @architectures = "spacy.SpanCategorizer.v1"
 | |
| 
 | |
| [components.spancat_singlelabel.model.reducer]
 | |
| @layers = "spacy.mean_max_reducer.v1"
 | |
| hidden_size = 128
 | |
| 
 | |
| [components.spancat_singlelabel.model.scorer]
 | |
| @layers = "Softmax.v2"
 | |
| 
 | |
| [components.spancat_singlelabel.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| 
 | |
| [components.spancat_singlelabel.suggester]
 | |
| @misc = "spacy.ngram_suggester.v1"
 | |
| sizes = [1,2,3]
 | |
| {% endif %}
 | |
| 
 | |
| {% if "trainable_lemmatizer" in components -%}
 | |
| [components.trainable_lemmatizer]
 | |
| factory = "trainable_lemmatizer"
 | |
| backoff = "orth"
 | |
| min_tree_freq = 3
 | |
| overwrite = false
 | |
| scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
 | |
| top_k = 1
 | |
| 
 | |
| [components.trainable_lemmatizer.model]
 | |
| @architectures = "spacy.Tagger.v2"
 | |
| nO = null
 | |
| normalize = false
 | |
| 
 | |
| [components.trainable_lemmatizer.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| {% endif -%}
 | |
| 
 | |
| {% if "entity_linker" in components -%}
 | |
| [components.entity_linker]
 | |
| factory = "entity_linker"
 | |
| get_candidates = {"@misc":"spacy.CandidateGenerator.v1"}
 | |
| incl_context = true
 | |
| incl_prior = true
 | |
| 
 | |
| [components.entity_linker.model]
 | |
| @architectures = "spacy.EntityLinker.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.entity_linker.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| {% endif %}
 | |
| 
 | |
| {% if "textcat" in components %}
 | |
| [components.textcat]
 | |
| factory = "textcat"
 | |
| 
 | |
| {% if optimize == "accuracy" %}
 | |
| [components.textcat.model]
 | |
| @architectures = "spacy.TextCatEnsemble.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.textcat.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| 
 | |
| [components.textcat.model.linear_model]
 | |
| @architectures = "spacy.TextCatBOW.v2"
 | |
| exclusive_classes = true
 | |
| ngram_size = 1
 | |
| no_output_layer = false
 | |
| 
 | |
| {% else -%}
 | |
| [components.textcat.model]
 | |
| @architectures = "spacy.TextCatBOW.v2"
 | |
| exclusive_classes = true
 | |
| ngram_size = 1
 | |
| no_output_layer = false
 | |
| {%- endif %}
 | |
| {%- endif %}
 | |
| 
 | |
| {% if "textcat_multilabel" in components %}
 | |
| [components.textcat_multilabel]
 | |
| factory = "textcat_multilabel"
 | |
| 
 | |
| {% if optimize == "accuracy" %}
 | |
| [components.textcat_multilabel.model]
 | |
| @architectures = "spacy.TextCatEnsemble.v2"
 | |
| nO = null
 | |
| 
 | |
| [components.textcat_multilabel.model.tok2vec]
 | |
| @architectures = "spacy.Tok2VecListener.v1"
 | |
| width = ${components.tok2vec.model.encode.width}
 | |
| 
 | |
| [components.textcat_multilabel.model.linear_model]
 | |
| @architectures = "spacy.TextCatBOW.v2"
 | |
| exclusive_classes = false
 | |
| ngram_size = 1
 | |
| no_output_layer = false
 | |
| 
 | |
| {% else -%}
 | |
| [components.textcat_multilabel.model]
 | |
| @architectures = "spacy.TextCatBOW.v2"
 | |
| exclusive_classes = false
 | |
| ngram_size = 1
 | |
| no_output_layer = false
 | |
| {%- endif %}
 | |
| {%- endif %}
 | |
| {% endif %}
 | |
| 
 | |
| {% for pipe in components %}
 | |
| {% if pipe not in listener_components %}
 | |
| {# Other components defined by the user: we just assume they're factories #}
 | |
| [components.{{ pipe }}]
 | |
| factory = "{{ pipe }}"
 | |
| {% endif %}
 | |
| {% endfor %}
 | |
| 
 | |
| [corpora]
 | |
| 
 | |
| [corpora.train]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths.train}
 | |
| max_length = 0
 | |
| 
 | |
| [corpora.dev]
 | |
| @readers = "spacy.Corpus.v1"
 | |
| path = ${paths.dev}
 | |
| max_length = 0
 | |
| 
 | |
| [training]
 | |
| {% if use_transformer -%}
 | |
| accumulate_gradient = {{ transformer["size_factor"] }}
 | |
| {% endif -%}
 | |
| dev_corpus = "corpora.dev"
 | |
| train_corpus = "corpora.train"
 | |
| 
 | |
| [training.optimizer]
 | |
| @optimizers = "Adam.v1"
 | |
| 
 | |
| {% if use_transformer -%}
 | |
| [training.optimizer.learn_rate]
 | |
| @schedules = "warmup_linear.v1"
 | |
| warmup_steps = 250
 | |
| total_steps = 20000
 | |
| initial_rate = 5e-5
 | |
| {% endif %}
 | |
| 
 | |
| {% if use_transformer %}
 | |
| [training.batcher]
 | |
| @batchers = "spacy.batch_by_padded.v1"
 | |
| discard_oversize = true
 | |
| size = 2000
 | |
| buffer = 256
 | |
| {%- else %}
 | |
| [training.batcher]
 | |
| @batchers = "spacy.batch_by_words.v1"
 | |
| discard_oversize = false
 | |
| tolerance = 0.2
 | |
| 
 | |
| [training.batcher.size]
 | |
| @schedules = "compounding.v1"
 | |
| start = 100
 | |
| stop = 1000
 | |
| compound = 1.001
 | |
| {% endif %}
 | |
| 
 | |
| [initialize]
 | |
| vectors = ${paths.vectors}
 |