mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 20:16:23 +03:00
476 lines
16 KiB
Cython
476 lines
16 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
"""
|
|
MALT-style dependency parser
|
|
"""
|
|
from __future__ import unicode_literals
|
|
cimport cython
|
|
cimport cython.parallel
|
|
|
|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
|
from cpython.exc cimport PyErr_CheckSignals
|
|
|
|
from libc.stdint cimport uint32_t, uint64_t
|
|
from libc.string cimport memset, memcpy
|
|
from libc.stdlib cimport malloc, calloc, free
|
|
from libc.math cimport exp
|
|
import os.path
|
|
from os import path
|
|
import shutil
|
|
import json
|
|
import sys
|
|
from .nonproj import PseudoProjectivity
|
|
import random
|
|
|
|
from cymem.cymem cimport Pool, Address
|
|
from murmurhash.mrmr cimport hash64
|
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t, idx_t
|
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
|
from thinc.linalg cimport VecVec
|
|
from thinc.structs cimport NeuralNetC, SparseArrayC, ExampleC
|
|
from preshed.maps cimport MapStruct
|
|
from preshed.maps cimport map_get
|
|
from thinc.structs cimport FeatureC
|
|
|
|
from util import Config
|
|
|
|
from ..structs cimport TokenC
|
|
|
|
from ..tokens.doc cimport Doc
|
|
from ..strings cimport StringStore
|
|
|
|
from .transition_system import OracleError
|
|
from .transition_system cimport TransitionSystem, Transition
|
|
|
|
from ..gold cimport GoldParse
|
|
|
|
from . import _parse_features
|
|
from ._parse_features cimport CONTEXT_SIZE
|
|
from ._parse_features cimport fill_context
|
|
from ._parse_features cimport *
|
|
from .stateclass cimport StateClass
|
|
from ._state cimport StateC
|
|
|
|
|
|
DEBUG = False
|
|
def set_debug(val):
|
|
global DEBUG
|
|
DEBUG = val
|
|
|
|
|
|
def get_templates(name):
|
|
pf = _parse_features
|
|
if name == 'ner':
|
|
return pf.ner
|
|
elif name == 'debug':
|
|
return pf.unigrams
|
|
elif name.startswith('neural'):
|
|
features = pf.words + pf.tags + pf.labels
|
|
slots = [0] * len(pf.words) + [1] * len(pf.tags) + [2] * len(pf.labels)
|
|
return ([(f,) for f in features], slots)
|
|
else:
|
|
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
|
|
pf.tree_shape + pf.trigrams)
|
|
|
|
|
|
def ParserFactory(transition_system):
|
|
return lambda strings, dir_: Parser(strings, dir_, transition_system)
|
|
|
|
|
|
cdef class ParserPerceptron(AveragedPerceptron):
|
|
@property
|
|
def widths(self):
|
|
return (self.extracter.nr_templ,)
|
|
|
|
def update(self, Example eg):
|
|
'''Does regression on negative cost. Sort of cute?'''
|
|
self.time += 1
|
|
cdef weight_t loss = 0.0
|
|
best = eg.best
|
|
for clas in range(eg.c.nr_class):
|
|
if not eg.c.is_valid[clas]:
|
|
continue
|
|
if eg.c.scores[clas] < eg.c.scores[best]:
|
|
continue
|
|
loss += (-eg.c.costs[clas] - eg.c.scores[clas]) ** 2
|
|
d_loss = 2 * (-eg.c.costs[clas] - eg.c.scores[clas])
|
|
step = d_loss * 0.001
|
|
for feat in eg.c.features[:eg.c.nr_feat]:
|
|
self.update_weight(feat.key, clas, feat.value * step)
|
|
return int(loss)
|
|
|
|
cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:
|
|
state = <const StateC*>_state
|
|
fill_context(eg.atoms, state)
|
|
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
|
|
|
|
|
cdef class ParserNeuralNet(NeuralNet):
|
|
def __init__(self, shape, **kwargs):
|
|
vector_widths = [4] * 76
|
|
slots = [0, 1, 2, 3] # S0
|
|
slots += [4, 5, 6, 7] # S1
|
|
slots += [8, 9, 10, 11] # S2
|
|
slots += [12, 13, 14, 15] # S3+
|
|
slots += [16, 17, 18, 19] # B0
|
|
slots += [20, 21, 22, 23] # B1
|
|
slots += [24, 25, 26, 27] # B2
|
|
slots += [28, 29, 30, 31] # B3+
|
|
slots += [32, 33, 34, 35] * 2 # S0l, S0r
|
|
slots += [36, 37, 38, 39] * 2 # B0l, B0r
|
|
slots += [40, 41, 42, 43] * 2 # S1l, S1r
|
|
slots += [44, 45, 46, 47] * 2 # S2l, S2r
|
|
slots += [48, 49, 50, 51, 52, 53, 54, 55]
|
|
slots += [53, 54, 55, 56]
|
|
input_length = sum(vector_widths[slot] for slot in slots)
|
|
widths = [input_length] + shape
|
|
NeuralNet.__init__(self, widths, embed=(vector_widths, slots), **kwargs)
|
|
|
|
@property
|
|
def nr_feat(self):
|
|
return 2000
|
|
|
|
cdef void set_featuresC(self, ExampleC* eg, const void* _state) nogil:
|
|
memset(eg.features, 0, 2000 * sizeof(FeatureC))
|
|
state = <const StateC*>_state
|
|
fill_context(eg.atoms, state)
|
|
feats = eg.features
|
|
|
|
feats = _add_token(feats, 0, state.S_(0), 1.0)
|
|
feats = _add_token(feats, 4, state.S_(1), 1.0)
|
|
feats = _add_token(feats, 8, state.S_(2), 1.0)
|
|
# Rest of the stack, with exponential decay
|
|
for i in range(3, state.stack_depth()):
|
|
feats = _add_token(feats, 12, state.S_(i), 1.0 * 0.5**(i-2))
|
|
feats = _add_token(feats, 16, state.B_(0), 1.0)
|
|
feats = _add_token(feats, 20, state.B_(1), 1.0)
|
|
feats = _add_token(feats, 24, state.B_(2), 1.0)
|
|
# Rest of the buffer, with exponential decay
|
|
for i in range(3, min(8, state.buffer_length())):
|
|
feats = _add_token(feats, 28, state.B_(i), 1.0 * 0.5**(i-2))
|
|
feats = _add_subtree(feats, 32, state, state.S(0))
|
|
feats = _add_subtree(feats, 40, state, state.B(0))
|
|
feats = _add_subtree(feats, 48, state, state.S(1))
|
|
feats = _add_subtree(feats, 56, state, state.S(2))
|
|
feats = _add_pos_bigram(feats, 64, state.S_(0), state.B_(0))
|
|
feats = _add_pos_bigram(feats, 65, state.S_(1), state.S_(0))
|
|
feats = _add_pos_bigram(feats, 66, state.S_(1), state.B_(0))
|
|
feats = _add_pos_bigram(feats, 67, state.S_(0), state.B_(1))
|
|
feats = _add_pos_bigram(feats, 68, state.S_(0), state.R_(state.S(0), 1))
|
|
feats = _add_pos_bigram(feats, 69, state.S_(0), state.R_(state.S(0), 2))
|
|
feats = _add_pos_bigram(feats, 70, state.S_(0), state.L_(state.S(0), 1))
|
|
feats = _add_pos_bigram(feats, 71, state.S_(0), state.L_(state.S(0), 2))
|
|
feats = _add_pos_trigram(feats, 72, state.S_(1), state.S_(0), state.B_(0))
|
|
feats = _add_pos_trigram(feats, 73, state.S_(0), state.B_(0), state.B_(1))
|
|
feats = _add_pos_trigram(feats, 74, state.S_(0), state.R_(state.S(0), 1),
|
|
state.R_(state.S(0), 2))
|
|
feats = _add_pos_trigram(feats, 75, state.S_(0), state.L_(state.S(0), 1),
|
|
state.L_(state.S(0), 2))
|
|
eg.nr_feat = feats - eg.features
|
|
|
|
cdef void _set_delta_lossC(self, weight_t* delta_loss,
|
|
const weight_t* Zs, const weight_t* scores) nogil:
|
|
for i in range(self.c.widths[self.c.nr_layer-1]):
|
|
delta_loss[i] = Zs[i]
|
|
|
|
cdef void _softmaxC(self, weight_t* out) nogil:
|
|
pass
|
|
|
|
|
|
cdef inline FeatureC* _add_token(FeatureC* feats,
|
|
int slot, const TokenC* token, weight_t value) nogil:
|
|
# Word
|
|
feats.i = slot
|
|
feats.key = token.lex.norm
|
|
feats.value = value
|
|
feats += 1
|
|
# POS tag
|
|
feats.i = slot+1
|
|
feats.key = token.tag
|
|
feats.value = value
|
|
feats += 1
|
|
# Dependency label
|
|
feats.i = slot+2
|
|
feats.key = token.dep
|
|
feats.value = value
|
|
feats += 1
|
|
# Word, label, tag
|
|
feats.i = slot+3
|
|
cdef uint64_t key[3]
|
|
key[0] = token.lex.cluster
|
|
key[1] = token.tag
|
|
key[2] = token.dep
|
|
feats.key = hash64(key, sizeof(key), 0)
|
|
feats.value = value
|
|
feats += 1
|
|
return feats
|
|
|
|
|
|
cdef inline FeatureC* _add_subtree(FeatureC* feats, int slot, const StateC* state, int t) nogil:
|
|
value = 1.0
|
|
for i in range(state.n_R(t)):
|
|
feats = _add_token(feats, slot, state.R_(t, i+1), value)
|
|
value *= 0.5
|
|
slot += 4
|
|
value = 1.0
|
|
for i in range(state.n_L(t)):
|
|
feats = _add_token(feats, slot, state.L_(t, i+1), value)
|
|
value *= 0.5
|
|
return feats
|
|
|
|
|
|
cdef inline FeatureC* _add_pos_bigram(FeatureC* feat, int slot,
|
|
const TokenC* t1, const TokenC* t2) nogil:
|
|
cdef uint64_t[2] key
|
|
key[0] = t1.tag
|
|
key[1] = t2.tag
|
|
feat.i = slot
|
|
feat.key = hash64(key, sizeof(key), slot)
|
|
feat.value = 1.0
|
|
return feat+1
|
|
|
|
|
|
cdef inline FeatureC* _add_pos_trigram(FeatureC* feat, int slot,
|
|
const TokenC* t1, const TokenC* t2, const TokenC* t3) nogil:
|
|
cdef uint64_t[3] key
|
|
key[0] = t1.tag
|
|
key[1] = t2.tag
|
|
key[2] = t3.tag
|
|
feat.i = slot
|
|
feat.key = hash64(key, sizeof(key), slot)
|
|
feat.value = 1.0
|
|
return feat+1
|
|
|
|
|
|
cdef class Parser:
|
|
def __init__(self, StringStore strings, transition_system, model):
|
|
self.moves = transition_system
|
|
self.model = model
|
|
|
|
@classmethod
|
|
def from_dir(cls, model_dir, strings, transition_system):
|
|
if not os.path.exists(model_dir):
|
|
print >> sys.stderr, "Warning: No model found at", model_dir
|
|
elif not os.path.isdir(model_dir):
|
|
print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
|
|
cfg = Config.read(model_dir, 'config')
|
|
moves = transition_system(strings, cfg.labels)
|
|
|
|
if cfg.get('model') == 'neural':
|
|
model = ParserNeuralNet(cfg.hidden_layers + [moves.n_moves],
|
|
update_step=cfg.update_step, eta=cfg.eta, rho=cfg.rho)
|
|
else:
|
|
model = ParserPerceptron(get_templates(cfg.feat_set))
|
|
|
|
if path.exists(path.join(model_dir, 'model')):
|
|
model.load(path.join(model_dir, 'model'))
|
|
return cls(strings, moves, model)
|
|
|
|
@classmethod
|
|
def load(cls, pkg_or_str_or_file, vocab):
|
|
# TODO
|
|
raise NotImplementedError(
|
|
"This should be here, but isn't yet =/. Use Parser.from_dir")
|
|
|
|
def __reduce__(self):
|
|
return (Parser, (self.moves.strings, self.moves, self.model), None, None)
|
|
|
|
def __call__(self, Doc tokens):
|
|
cdef int nr_class = self.moves.n_moves
|
|
cdef int nr_feat = self.model.nr_feat
|
|
with nogil:
|
|
self.parseC(tokens.c, tokens.length, nr_feat, nr_class)
|
|
# Check for KeyboardInterrupt etc. Untested
|
|
PyErr_CheckSignals()
|
|
self.moves.finalize_doc(tokens)
|
|
|
|
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
|
cdef Pool mem = Pool()
|
|
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
|
|
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
|
|
cdef Doc doc
|
|
cdef int i
|
|
cdef int nr_class = self.moves.n_moves
|
|
cdef int nr_feat = self.model.nr_feat
|
|
cdef int status
|
|
queue = []
|
|
for doc in stream:
|
|
doc_ptr[len(queue)] = doc.c
|
|
lengths[len(queue)] = doc.length
|
|
queue.append(doc)
|
|
if len(queue) == batch_size:
|
|
with nogil:
|
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
|
|
if status != 0:
|
|
with gil:
|
|
sent_str = queue[i].text
|
|
raise ValueError("Error parsing doc: %s" % sent_str)
|
|
PyErr_CheckSignals()
|
|
for doc in queue:
|
|
self.moves.finalize_doc(doc)
|
|
yield doc
|
|
queue = []
|
|
batch_size = len(queue)
|
|
with nogil:
|
|
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
|
|
status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
|
|
if status != 0:
|
|
with gil:
|
|
sent_str = queue[i].text
|
|
raise ValueError("Error parsing doc: %s" % sent_str)
|
|
PyErr_CheckSignals()
|
|
for doc in queue:
|
|
self.moves.finalize_doc(doc)
|
|
yield doc
|
|
|
|
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
|
|
cdef Example py_eg = Example(nr_class=nr_class, nr_atom=CONTEXT_SIZE, nr_feat=nr_feat,
|
|
widths=self.model.widths)
|
|
cdef ExampleC* eg = py_eg.c
|
|
state = new StateC(tokens, length)
|
|
self.moves.initialize_state(state)
|
|
cdef int i
|
|
while not state.is_final():
|
|
self.model.set_featuresC(eg, state)
|
|
self.moves.set_valid(eg.is_valid, state)
|
|
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat, 1)
|
|
|
|
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
|
|
|
|
action = self.moves.c[guess]
|
|
if not eg.is_valid[guess]:
|
|
return 1
|
|
|
|
action.do(state, action.label)
|
|
py_eg.reset()
|
|
self.moves.finalize_state(state)
|
|
for i in range(length):
|
|
tokens[i] = state._sent[i]
|
|
del state
|
|
return 0
|
|
|
|
def train(self, Doc tokens, GoldParse gold):
|
|
self.moves.preprocess_gold(gold)
|
|
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
|
|
self.moves.initialize_state(stcls.c)
|
|
cdef Pool mem = Pool()
|
|
cdef Example eg = Example(
|
|
nr_class=self.moves.n_moves,
|
|
widths=self.model.widths,
|
|
nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.model.nr_feat)
|
|
loss = 0
|
|
cdef Transition action
|
|
while not stcls.is_final():
|
|
self.model.set_featuresC(eg.c, stcls.c)
|
|
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat, 1)
|
|
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
|
|
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
|
assert guess >= 0
|
|
action = self.moves.c[guess]
|
|
action.do(stcls.c, action.label)
|
|
|
|
loss += self.model.update(eg)
|
|
eg.reset()
|
|
return loss
|
|
|
|
def step_through(self, Doc doc):
|
|
return StepwiseState(self, doc)
|
|
|
|
def from_transition_sequence(self, Doc doc, sequence):
|
|
with self.step_through(doc) as stepwise:
|
|
for transition in sequence:
|
|
stepwise.transition(transition)
|
|
|
|
def add_label(self, label):
|
|
for action in self.moves.action_types:
|
|
self.moves.add_action(action, label)
|
|
|
|
|
|
cdef class StepwiseState:
|
|
cdef readonly StateClass stcls
|
|
cdef readonly Example eg
|
|
cdef readonly Doc doc
|
|
cdef readonly Parser parser
|
|
|
|
def __init__(self, Parser parser, Doc doc):
|
|
self.parser = parser
|
|
self.doc = doc
|
|
self.stcls = StateClass.init(doc.c, doc.length)
|
|
self.parser.moves.initialize_state(self.stcls.c)
|
|
self.eg = Example(
|
|
nr_class=self.parser.moves.n_moves,
|
|
nr_atom=CONTEXT_SIZE,
|
|
nr_feat=self.parser.model.nr_feat)
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self.finish()
|
|
|
|
@property
|
|
def is_final(self):
|
|
return self.stcls.is_final()
|
|
|
|
@property
|
|
def stack(self):
|
|
return self.stcls.stack
|
|
|
|
@property
|
|
def queue(self):
|
|
return self.stcls.queue
|
|
|
|
@property
|
|
def heads(self):
|
|
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
|
|
|
|
@property
|
|
def deps(self):
|
|
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
|
|
for i in range(self.stcls.c.length)]
|
|
|
|
def predict(self):
|
|
self.eg.reset()
|
|
self.parser.model.set_featuresC(self.eg.c, self.stcls.c)
|
|
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
|
self.parser.model.set_scoresC(self.eg.c.scores,
|
|
self.eg.c.features, self.eg.c.nr_feat, 1)
|
|
|
|
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
|
return self.parser.moves.move_name(action.move, action.label)
|
|
|
|
def transition(self, action_name):
|
|
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
|
|
if action_name == '_':
|
|
action_name = self.predict()
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
elif action_name == 'L' or action_name == 'R':
|
|
self.predict()
|
|
move = moves[action_name]
|
|
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
|
|
self.eg.c.nr_class)
|
|
action = self.parser.moves.c[clas]
|
|
else:
|
|
action = self.parser.moves.lookup_transition(action_name)
|
|
action.do(self.stcls.c, action.label)
|
|
|
|
def finish(self):
|
|
if self.stcls.is_final():
|
|
self.parser.moves.finalize_state(self.stcls.c)
|
|
self.doc.set_parse(self.stcls.c._sent)
|
|
self.parser.moves.finalize_doc(self.doc)
|
|
|
|
|
|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
|
|
int nr_class) except -1:
|
|
cdef weight_t score = 0
|
|
cdef int mode = -1
|
|
cdef int i
|
|
for i in range(nr_class):
|
|
if actions[i].move == move and (mode == -1 or scores[i] >= score):
|
|
mode = i
|
|
score = scores[i]
|
|
return mode
|