mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Add support for pos/morphs/lemmas throughout `GoldParse`, `Example`, and `docs_to_json()`.
		
			
				
	
	
		
			483 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			483 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from spacy.errors import AlignmentError
 | |
| from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
 | |
| from spacy.gold import spans_from_biluo_tags, GoldParse, iob_to_biluo, align
 | |
| from spacy.gold import GoldCorpus, docs_to_json, Example, DocAnnotation
 | |
| from spacy.lang.en import English
 | |
| from spacy.syntax.nonproj import is_nonproj_tree
 | |
| from spacy.tokens import Doc
 | |
| from spacy.util import compounding, minibatch
 | |
| from .util import make_tempdir
 | |
| import pytest
 | |
| import srsly
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc():
 | |
|     text = "Sarah's sister flew to Silicon Valley via London."
 | |
|     tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | |
|     pos = [
 | |
|         "PROPN",
 | |
|         "PART",
 | |
|         "NOUN",
 | |
|         "VERB",
 | |
|         "ADP",
 | |
|         "PROPN",
 | |
|         "PROPN",
 | |
|         "ADP",
 | |
|         "PROPN",
 | |
|         "PUNCT",
 | |
|     ]
 | |
|     morphs = [
 | |
|         "NounType=prop|Number=sing",
 | |
|         "Poss=yes",
 | |
|         "Number=sing",
 | |
|         "Tense=past|VerbForm=fin",
 | |
|         "",
 | |
|         "NounType=prop|Number=sing",
 | |
|         "NounType=prop|Number=sing",
 | |
|         "",
 | |
|         "NounType=prop|Number=sing",
 | |
|         "PunctType=peri",
 | |
|     ]
 | |
|     # head of '.' is intentionally nonprojective for testing
 | |
|     heads = [2, 0, 3, 3, 3, 6, 4, 3, 7, 5]
 | |
|     deps = [
 | |
|         "poss",
 | |
|         "case",
 | |
|         "nsubj",
 | |
|         "ROOT",
 | |
|         "prep",
 | |
|         "compound",
 | |
|         "pobj",
 | |
|         "prep",
 | |
|         "pobj",
 | |
|         "punct",
 | |
|     ]
 | |
|     lemmas = [
 | |
|         "Sarah",
 | |
|         "'s",
 | |
|         "sister",
 | |
|         "fly",
 | |
|         "to",
 | |
|         "Silicon",
 | |
|         "Valley",
 | |
|         "via",
 | |
|         "London",
 | |
|         ".",
 | |
|     ]
 | |
|     biluo_tags = ["U-PERSON", "O", "O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | |
|     nlp = English()
 | |
|     doc = nlp(text)
 | |
|     for i in range(len(tags)):
 | |
|         doc[i].tag_ = tags[i]
 | |
|         doc[i].pos_ = pos[i]
 | |
|         doc[i].morph_ = morphs[i]
 | |
|         doc[i].lemma_ = lemmas[i]
 | |
|         doc[i].dep_ = deps[i]
 | |
|         doc[i].head = doc[heads[i]]
 | |
|     doc.ents = spans_from_biluo_tags(doc, biluo_tags)
 | |
|     doc.cats = cats
 | |
|     doc.is_tagged = True
 | |
|     doc.is_parsed = True
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @pytest.fixture()
 | |
| def merged_dict():
 | |
|     return {
 | |
|         "ids": [1, 2, 3, 4, 5, 6, 7],
 | |
|         "words": ["Hi", "there", "everyone", "It", "is", "just", "me"],
 | |
|         "tags": ["INTJ", "ADV", "PRON", "PRON", "AUX", "ADV", "PRON"],
 | |
|         "sent_starts": [1, 0, 0, 1, 0, 0, 0, 0],
 | |
|     }
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_U(en_vocab):
 | |
|     words = ["I", "flew", "to", "London", "."]
 | |
|     spaces = [True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to London"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "U-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "."]
 | |
|     spaces = [True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BIL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_overlap(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [
 | |
|         (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
 | |
|         (len("I flew to "), len("I flew to San Francisco"), "LOC"),
 | |
|     ]
 | |
|     with pytest.raises(ValueError):
 | |
|         biluo_tags_from_offsets(doc, entities)
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_misalign(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley."]
 | |
|     spaces = [True, True, True, True, True, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "-", "-", "-"]
 | |
| 
 | |
| 
 | |
| def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
 | |
|     text = "I flew to Silicon Valley via London."
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
 | |
|     doc = en_tokenizer(text)
 | |
|     biluo_tags_converted = biluo_tags_from_offsets(doc, offsets)
 | |
|     assert biluo_tags_converted == biluo_tags
 | |
|     offsets_converted = offsets_from_biluo_tags(doc, biluo_tags)
 | |
|     assert offsets_converted == offsets
 | |
| 
 | |
| 
 | |
| def test_biluo_spans(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     spans = spans_from_biluo_tags(doc, biluo_tags)
 | |
|     assert len(spans) == 2
 | |
|     assert spans[0].text == "Silicon Valley"
 | |
|     assert spans[0].label_ == "LOC"
 | |
|     assert spans[1].text == "London"
 | |
|     assert spans[1].label_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_gold_ner_missing_tags(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     gold = GoldParse(doc, entities=biluo_tags)  # noqa: F841
 | |
| 
 | |
| 
 | |
| def test_iob_to_biluo():
 | |
|     good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
 | |
|     good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
 | |
|     bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
 | |
|     converted_biluo = iob_to_biluo(good_iob)
 | |
|     assert good_biluo == converted_biluo
 | |
|     with pytest.raises(ValueError):
 | |
|         iob_to_biluo(bad_iob)
 | |
| 
 | |
| 
 | |
| def test_roundtrip_docs_to_json(doc):
 | |
|     nlp = English()
 | |
|     text = doc.text
 | |
|     tags = [t.tag_ for t in doc]
 | |
|     pos = [t.pos_ for t in doc]
 | |
|     morphs = [t.morph_ for t in doc]
 | |
|     lemmas = [t.lemma_ for t in doc]
 | |
|     deps = [t.dep_ for t in doc]
 | |
|     heads = [t.head.i for t in doc]
 | |
|     biluo_tags = iob_to_biluo(
 | |
|         [t.ent_iob_ + "-" + t.ent_type_ if t.ent_type_ else "O" for t in doc]
 | |
|     )
 | |
|     cats = doc.cats
 | |
| 
 | |
|     # roundtrip to JSON
 | |
|     with make_tempdir() as tmpdir:
 | |
|         json_file = tmpdir / "roundtrip.json"
 | |
|         srsly.write_json(json_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(train=str(json_file), dev=str(json_file))
 | |
| 
 | |
|     reloaded_example = next(goldcorpus.dev_dataset(nlp))
 | |
|     goldparse = reloaded_example.gold
 | |
| 
 | |
|     assert len(doc) == goldcorpus.count_train()
 | |
|     assert text == reloaded_example.text
 | |
|     assert tags == goldparse.tags
 | |
|     assert pos == goldparse.pos
 | |
|     assert morphs == goldparse.morphs
 | |
|     assert lemmas == goldparse.lemmas
 | |
|     assert deps == goldparse.labels
 | |
|     assert heads == goldparse.heads
 | |
|     assert biluo_tags == goldparse.ner
 | |
|     assert "TRAVEL" in goldparse.cats
 | |
|     assert "BAKING" in goldparse.cats
 | |
|     assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == goldparse.cats["BAKING"]
 | |
| 
 | |
|     # roundtrip to JSONL train dicts
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "roundtrip.jsonl"
 | |
|         srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     reloaded_example = next(goldcorpus.dev_dataset(nlp))
 | |
|     goldparse = reloaded_example.gold
 | |
| 
 | |
|     assert len(doc) == goldcorpus.count_train()
 | |
|     assert text == reloaded_example.text
 | |
|     assert tags == goldparse.tags
 | |
|     assert pos == goldparse.pos
 | |
|     assert morphs == goldparse.morphs
 | |
|     assert lemmas == goldparse.lemmas
 | |
|     assert deps == goldparse.labels
 | |
|     assert heads == goldparse.heads
 | |
|     assert biluo_tags == goldparse.ner
 | |
|     assert "TRAVEL" in goldparse.cats
 | |
|     assert "BAKING" in goldparse.cats
 | |
|     assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == goldparse.cats["BAKING"]
 | |
| 
 | |
|     # roundtrip to JSONL tuples
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "roundtrip.jsonl"
 | |
|         # write to JSONL train dicts
 | |
|         srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
|         # load and rewrite as JSONL tuples
 | |
|         srsly.write_jsonl(jsonl_file, goldcorpus.train_examples)
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     reloaded_example = next(goldcorpus.dev_dataset(nlp))
 | |
|     goldparse = reloaded_example.gold
 | |
| 
 | |
|     assert len(doc) == goldcorpus.count_train()
 | |
|     assert text == reloaded_example.text
 | |
|     assert tags == goldparse.tags
 | |
|     assert deps == goldparse.labels
 | |
|     assert heads == goldparse.heads
 | |
|     assert lemmas == goldparse.lemmas
 | |
|     assert biluo_tags == goldparse.ner
 | |
|     assert "TRAVEL" in goldparse.cats
 | |
|     assert "BAKING" in goldparse.cats
 | |
|     assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == goldparse.cats["BAKING"]
 | |
| 
 | |
| 
 | |
| def test_projective_train_vs_nonprojective_dev(doc):
 | |
|     nlp = English()
 | |
|     deps = [t.dep_ for t in doc]
 | |
|     heads = [t.head.i for t in doc]
 | |
| 
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "test.jsonl"
 | |
|         # write to JSONL train dicts
 | |
|         srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     train_reloaded_example = next(goldcorpus.train_dataset(nlp))
 | |
|     train_goldparse = train_reloaded_example.gold
 | |
| 
 | |
|     dev_reloaded_example = next(goldcorpus.dev_dataset(nlp))
 | |
|     dev_goldparse = dev_reloaded_example.gold
 | |
| 
 | |
|     assert is_nonproj_tree([t.head.i for t in doc]) is True
 | |
|     assert is_nonproj_tree(train_goldparse.heads) is False
 | |
|     assert heads[:-1] == train_goldparse.heads[:-1]
 | |
|     assert heads[-1] != train_goldparse.heads[-1]
 | |
|     assert deps[:-1] == train_goldparse.labels[:-1]
 | |
|     assert deps[-1] != train_goldparse.labels[-1]
 | |
| 
 | |
|     assert heads == dev_goldparse.heads
 | |
|     assert deps == dev_goldparse.labels
 | |
| 
 | |
| 
 | |
| def test_ignore_misaligned(doc):
 | |
|     nlp = English()
 | |
|     text = doc.text
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "test.jsonl"
 | |
|         data = [docs_to_json(doc)]
 | |
|         data[0]["paragraphs"][0]["raw"] = text.replace("Sarah", "Jane")
 | |
|         # write to JSONL train dicts
 | |
|         srsly.write_jsonl(jsonl_file, data)
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     with pytest.raises(AlignmentError):
 | |
|         train_reloaded_example = next(goldcorpus.train_dataset(nlp))
 | |
| 
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "test.jsonl"
 | |
|         data = [docs_to_json(doc)]
 | |
|         data[0]["paragraphs"][0]["raw"] = text.replace("Sarah", "Jane")
 | |
|         # write to JSONL train dicts
 | |
|         srsly.write_jsonl(jsonl_file, data)
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     # doesn't raise an AlignmentError, but there is nothing to iterate over
 | |
|     # because the only example can't be aligned
 | |
|     train_reloaded_example = list(goldcorpus.train_dataset(nlp, ignore_misaligned=True))
 | |
|     assert len(train_reloaded_example) == 0
 | |
| 
 | |
| 
 | |
| def test_make_orth_variants(doc):
 | |
|     nlp = English()
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "test.jsonl"
 | |
|         # write to JSONL train dicts
 | |
|         srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     # due to randomness, test only that this runs with no errors for now
 | |
|     train_reloaded_example = next(goldcorpus.train_dataset(nlp, orth_variant_level=0.2))
 | |
|     train_goldparse = train_reloaded_example.gold  # noqa: F841
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "tokens_a,tokens_b,expected",
 | |
|     [
 | |
|         (["a", "b", "c"], ["ab", "c"], (3, [-1, -1, 1], [-1, 2], {0: 0, 1: 0}, {})),
 | |
|         (
 | |
|             ["a", "b", '"', "c"],
 | |
|             ['ab"', "c"],
 | |
|             (4, [-1, -1, -1, 1], [-1, 3], {0: 0, 1: 0, 2: 0}, {}),
 | |
|         ),
 | |
|         (["a", "bc"], ["ab", "c"], (4, [-1, -1], [-1, -1], {0: 0}, {1: 1})),
 | |
|         (
 | |
|             ["ab", "c", "d"],
 | |
|             ["a", "b", "cd"],
 | |
|             (6, [-1, -1, -1], [-1, -1, -1], {1: 2, 2: 2}, {0: 0, 1: 0}),
 | |
|         ),
 | |
|         (
 | |
|             ["a", "b", "cd"],
 | |
|             ["a", "b", "c", "d"],
 | |
|             (3, [0, 1, -1], [0, 1, -1, -1], {}, {2: 2, 3: 2}),
 | |
|         ),
 | |
|         ([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})),
 | |
|     ],
 | |
| )
 | |
| def test_align(tokens_a, tokens_b, expected):
 | |
|     cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b)
 | |
|     assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected
 | |
|     # check symmetry
 | |
|     cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a)
 | |
|     assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected
 | |
| 
 | |
| 
 | |
| def test_goldparse_startswith_space(en_tokenizer):
 | |
|     text = " a"
 | |
|     doc = en_tokenizer(text)
 | |
|     g = GoldParse(doc, words=["a"], entities=["U-DATE"], deps=["ROOT"], heads=[0])
 | |
|     assert g.words == [" ", "a"]
 | |
|     assert g.ner == [None, "U-DATE"]
 | |
|     assert g.labels == [None, "ROOT"]
 | |
| 
 | |
| 
 | |
| def test_gold_constructor():
 | |
|     """Test that the GoldParse constructor works fine"""
 | |
|     nlp = English()
 | |
|     doc = nlp("This is a sentence")
 | |
|     gold = GoldParse(doc, cats={"cat1": 1.0, "cat2": 0.0})
 | |
| 
 | |
|     assert gold.cats["cat1"]
 | |
|     assert not gold.cats["cat2"]
 | |
|     assert gold.words == ["This", "is", "a", "sentence"]
 | |
| 
 | |
| 
 | |
| def test_gold_orig_annot():
 | |
|     nlp = English()
 | |
|     doc = nlp("This is a sentence")
 | |
|     gold = GoldParse(doc, cats={"cat1": 1.0, "cat2": 0.0})
 | |
| 
 | |
|     assert gold.orig.words == ["This", "is", "a", "sentence"]
 | |
|     assert gold.cats["cat1"]
 | |
| 
 | |
|     doc_annotation = DocAnnotation(cats={"cat1": 0.0, "cat2": 1.0})
 | |
|     gold2 = GoldParse.from_annotation(doc, doc_annotation, gold.orig)
 | |
|     assert gold2.orig.words == ["This", "is", "a", "sentence"]
 | |
|     assert not gold2.cats["cat1"]
 | |
| 
 | |
| 
 | |
| def test_tuple_format_implicit():
 | |
|     """Test tuple format with implicit GoldParse creation"""
 | |
| 
 | |
|     train_data = [
 | |
|         ("Uber blew through $1 million a week", {"entities": [(0, 4, "ORG")]}),
 | |
|         (
 | |
|             "Spotify steps up Asia expansion",
 | |
|             {"entities": [(0, 8, "ORG"), (17, 21, "LOC")]},
 | |
|         ),
 | |
|         ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | |
|     ]
 | |
| 
 | |
|     _train(train_data)
 | |
| 
 | |
| 
 | |
| def test_tuple_format_implicit_invalid():
 | |
|     """Test that an error is thrown for an implicit invalid GoldParse field"""
 | |
| 
 | |
|     train_data = [
 | |
|         ("Uber blew through $1 million a week", {"frumble": [(0, 4, "ORG")]}),
 | |
|         (
 | |
|             "Spotify steps up Asia expansion",
 | |
|             {"entities": [(0, 8, "ORG"), (17, 21, "LOC")]},
 | |
|         ),
 | |
|         ("Google rebrands its business apps", {"entities": [(0, 6, "ORG")]}),
 | |
|     ]
 | |
| 
 | |
|     with pytest.raises(TypeError):
 | |
|         _train(train_data)
 | |
| 
 | |
| 
 | |
| def _train(train_data):
 | |
|     nlp = English()
 | |
|     ner = nlp.create_pipe("ner")
 | |
|     ner.add_label("ORG")
 | |
|     ner.add_label("LOC")
 | |
|     nlp.add_pipe(ner)
 | |
| 
 | |
|     optimizer = nlp.begin_training()
 | |
|     for i in range(5):
 | |
|         losses = {}
 | |
|         batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
 | |
|         for batch in batches:
 | |
|             nlp.update(batch, sgd=optimizer, losses=losses)
 | |
| 
 | |
| 
 | |
| def test_split_sents(merged_dict):
 | |
|     nlp = English()
 | |
|     example = Example()
 | |
|     example.set_token_annotation(**merged_dict)
 | |
|     assert len(example.get_gold_parses(merge=False, vocab=nlp.vocab)) == 2
 | |
|     assert len(example.get_gold_parses(merge=True, vocab=nlp.vocab)) == 1
 | |
| 
 | |
|     split_examples = example.split_sents()
 | |
|     assert len(split_examples) == 2
 | |
| 
 | |
|     token_annotation_1 = split_examples[0].token_annotation
 | |
|     assert token_annotation_1.ids == [1, 2, 3]
 | |
|     assert token_annotation_1.words == ["Hi", "there", "everyone"]
 | |
|     assert token_annotation_1.tags == ["INTJ", "ADV", "PRON"]
 | |
|     assert token_annotation_1.sent_starts == [1, 0, 0]
 | |
| 
 | |
|     token_annotation_2 = split_examples[1].token_annotation
 | |
|     assert token_annotation_2.ids == [4, 5, 6, 7]
 | |
|     assert token_annotation_2.words == ["It", "is", "just", "me"]
 | |
|     assert token_annotation_2.tags == ["PRON", "AUX", "ADV", "PRON"]
 | |
|     assert token_annotation_2.sent_starts == [1, 0, 0, 0]
 | |
| 
 | |
| 
 | |
| def test_tuples_to_example(merged_dict):
 | |
|     ex = Example()
 | |
|     ex.set_token_annotation(**merged_dict)
 | |
|     cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | |
|     ex.set_doc_annotation(cats=cats)
 | |
|     ex_dict = ex.to_dict()
 | |
| 
 | |
|     assert ex_dict["token_annotation"]["ids"] == merged_dict["ids"]
 | |
|     assert ex_dict["token_annotation"]["words"] == merged_dict["words"]
 | |
|     assert ex_dict["token_annotation"]["tags"] == merged_dict["tags"]
 | |
|     assert ex_dict["token_annotation"]["sent_starts"] == merged_dict["sent_starts"]
 | |
|     assert ex_dict["doc_annotation"]["cats"] == cats
 |