mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Starts to run * Update pretrain script * Update corpus * Update pretrain schema * Remove outdated test * Make JsonlTexts produce Example objects.
		
			
				
	
	
		
			366 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional
 | |
| import numpy
 | |
| import time
 | |
| import re
 | |
| from collections import Counter
 | |
| from pathlib import Path
 | |
| from thinc.api import Config
 | |
| from thinc.api import use_pytorch_for_gpu_memory, require_gpu
 | |
| from thinc.api import set_dropout_rate, to_categorical, fix_random_seed
 | |
| from thinc.api import CosineDistance, L2Distance
 | |
| from wasabi import msg
 | |
| import srsly
 | |
| from functools import partial
 | |
| import typer
 | |
| 
 | |
| from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
 | |
| from ._util import import_code
 | |
| from ..ml.models.multi_task import build_cloze_multi_task_model
 | |
| from ..ml.models.multi_task import build_cloze_characters_multi_task_model
 | |
| from ..tokens import Doc
 | |
| from ..attrs import ID
 | |
| from .. import util
 | |
| 
 | |
| 
 | |
| @app.command(
 | |
|     "pretrain",
 | |
|     context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
 | |
| )
 | |
| def pretrain_cli(
 | |
|     # fmt: off
 | |
|     ctx: typer.Context,  # This is only used to read additional arguments
 | |
|     config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False),
 | |
|     output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"),
 | |
|     code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | |
|     resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
 | |
|     epoch_resume: Optional[int] = Opt(None, "--epoch-resume", "-er", help="The epoch to resume counting from when using --resume-path. Prevents unintended overwriting of existing weight files."),
 | |
|     use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | |
|     # fmt: on
 | |
| ):
 | |
|     """
 | |
|     Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
 | |
|     using an approximate language-modelling objective. Two objective types
 | |
|     are available, vector-based and character-based.
 | |
| 
 | |
|     In the vector-based objective, we load word vectors that have been trained
 | |
|     using a word2vec-style distributional similarity algorithm, and train a
 | |
|     component like a CNN, BiLSTM, etc to predict vectors which match the
 | |
|     pretrained ones. The weights are saved to a directory after each epoch. You
 | |
|     can then pass a path to one of these pretrained weights files to the
 | |
|     'spacy train' command.
 | |
| 
 | |
|     This technique may be especially helpful if you have little labelled data.
 | |
|     However, it's still quite experimental, so your mileage may vary.
 | |
| 
 | |
|     To load the weights back in during 'spacy train', you need to ensure
 | |
|     all settings are the same between pretraining and training. Ideally,
 | |
|     this is done by using the same config file for both commands.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/cli#pretrain
 | |
|     """
 | |
|     config_overrides = parse_config_overrides(ctx.args)
 | |
|     import_code(code_path)
 | |
|     verify_cli_args(config_path, output_dir, resume_path, epoch_resume)
 | |
|     if use_gpu >= 0:
 | |
|         msg.info("Using GPU")
 | |
|         require_gpu(use_gpu)
 | |
|     else:
 | |
|         msg.info("Using CPU")
 | |
|     msg.info(f"Loading config from: {config_path}")
 | |
| 
 | |
|     with show_validation_error(config_path):
 | |
|         config = util.load_config(
 | |
|             config_path,
 | |
|             overrides=config_overrides,
 | |
|             interpolate=True
 | |
|         )
 | |
|     if not config.get("pretraining"):
 | |
|         # TODO: What's the solution here? How do we handle optional blocks?
 | |
|         msg.fail("The [pretraining] block in your config is empty", exits=1)
 | |
|     if not output_dir.exists():
 | |
|         output_dir.mkdir()
 | |
|         msg.good(f"Created output directory: {output_dir}")
 | |
| 
 | |
|     config.to_disk(output_dir / "config.cfg")
 | |
|     msg.good("Saved config file in the output directory")
 | |
|  
 | |
|     pretrain(
 | |
|         config,
 | |
|         output_dir,
 | |
|         resume_path=resume_path,
 | |
|         epoch_resume=epoch_resume,
 | |
|         use_gpu=use_gpu,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def pretrain(
 | |
|     config: Config,
 | |
|     output_dir: Path,
 | |
|     resume_path: Optional[Path] = None,
 | |
|     epoch_resume: Optional[int] = None,
 | |
|     use_gpu: int=-1
 | |
| ):
 | |
|     if config["system"].get("seed") is not None:
 | |
|         fix_random_seed(config["system"]["seed"])
 | |
|     if use_gpu >= 0 and config["system"].get("use_pytorch_for_gpu_memory"):
 | |
|         use_pytorch_for_gpu_memory()
 | |
|     nlp, config = util.load_model_from_config(config)
 | |
|     P_cfg = config["pretraining"]
 | |
|     corpus = P_cfg["corpus"]
 | |
|     batcher = P_cfg["batcher"]
 | |
|     model = create_pretraining_model(nlp, config["pretraining"])
 | |
|     optimizer = config["pretraining"]["optimizer"]
 | |
| 
 | |
|     # Load in pretrained weights to resume from
 | |
|     if resume_path is not None:
 | |
|         _resume_model(model, resume_path, epoch_resume)
 | |
|     else:
 | |
|         # Without '--resume-path' the '--epoch-resume' argument is ignored
 | |
|         epoch_resume = 0
 | |
| 
 | |
|     tracker = ProgressTracker(frequency=10000)
 | |
|     msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
 | |
|     row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
 | |
|     msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
 | |
| 
 | |
|     def _save_model(epoch, is_temp=False):
 | |
|         is_temp_str = ".temp" if is_temp else ""
 | |
|         with model.use_params(optimizer.averages):
 | |
|             with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
 | |
|                 file_.write(model.get_ref("tok2vec").to_bytes())
 | |
|             log = {
 | |
|                 "nr_word": tracker.nr_word,
 | |
|                 "loss": tracker.loss,
 | |
|                 "epoch_loss": tracker.epoch_loss,
 | |
|                 "epoch": epoch,
 | |
|             }
 | |
|             with (output_dir / "log.jsonl").open("a") as file_:
 | |
|                 file_.write(srsly.json_dumps(log) + "\n")
 | |
| 
 | |
|     objective = create_objective(P_cfg["objective"])
 | |
|     # TODO: I think we probably want this to look more like the
 | |
|     # 'create_train_batches' function?
 | |
|     for epoch in range(epoch_resume, P_cfg["max_epochs"]):
 | |
|         for batch_id, batch in enumerate(batcher(corpus(nlp))):
 | |
|             docs = ensure_docs(batch)
 | |
|             loss = make_update(model, docs, optimizer, objective)
 | |
|             progress = tracker.update(epoch, loss, docs)
 | |
|             if progress:
 | |
|                 msg.row(progress, **row_settings)
 | |
|             if P_cfg["n_save_every"] and (
 | |
|                 batch_id % P_cfg["n_save_every"] == 0
 | |
|             ):
 | |
|                 _save_model(epoch, is_temp=True)
 | |
|         _save_model(epoch)
 | |
|         tracker.epoch_loss = 0.0
 | |
|     msg.good("Successfully finished pretrain")
 | |
| 
 | |
| 
 | |
| def ensure_docs(examples_or_docs):
 | |
|     docs = []
 | |
|     for eg_or_doc in examples_or_docs:
 | |
|         if isinstance(eg_or_doc, Doc):
 | |
|             docs.append(eg_or_doc)
 | |
|         else:
 | |
|             docs.append(eg_or_doc.reference)
 | |
|     return docs
 | |
| 
 | |
| 
 | |
| def _resume_model(model, resume_path, epoch_resume):
 | |
|     msg.info(f"Resume training tok2vec from: {resume_path}")
 | |
|     with resume_path.open("rb") as file_:
 | |
|         weights_data = file_.read()
 | |
|         model.get_ref("tok2vec").from_bytes(weights_data)
 | |
|     # Parse the epoch number from the given weight file
 | |
|     model_name = re.search(r"model\d+\.bin", str(resume_path))
 | |
|     if model_name:
 | |
|         # Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
 | |
|         epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
 | |
|         msg.info(f"Resuming from epoch: {epoch_resume}")
 | |
|     else:
 | |
|         msg.info(f"Resuming from epoch: {epoch_resume}")
 | |
| 
 | |
| 
 | |
| def make_update(model, docs, optimizer, objective_func):
 | |
|     """Perform an update over a single batch of documents.
 | |
| 
 | |
|     docs (iterable): A batch of `Doc` objects.
 | |
|     optimizer (callable): An optimizer.
 | |
|     RETURNS loss: A float for the loss.
 | |
|     """
 | |
|     predictions, backprop = model.begin_update(docs)
 | |
|     loss, gradients = objective_func(model.ops, docs, predictions)
 | |
|     backprop(gradients)
 | |
|     model.finish_update(optimizer)
 | |
|     # Don't want to return a cupy object here
 | |
|     # The gradients are modified in-place by the BERT MLM,
 | |
|     # so we get an accurate loss
 | |
|     return float(loss)
 | |
| 
 | |
| 
 | |
| def create_objective(config):
 | |
|     """Create the objective for pretraining.
 | |
| 
 | |
|     We'd like to replace this with a registry function but it's tricky because
 | |
|     we're also making a model choice based on this. For now we hard-code support
 | |
|     for two types (characters, vectors). For characters you can specify
 | |
|     n_characters, for vectors you can specify the loss.
 | |
| 
 | |
|     Bleh.
 | |
|     """
 | |
|     objective_type = config["type"]
 | |
|     if objective_type == "characters":
 | |
|         return partial(get_characters_loss, nr_char=config["n_characters"])
 | |
|     elif objective_type == "vectors":
 | |
|         if config["loss"] == "cosine":
 | |
|             return partial(
 | |
|                 get_vectors_loss,
 | |
|                 distance=CosineDistance(normalize=True, ignore_zeros=True),
 | |
|             )
 | |
|         elif config["loss"] == "L2":
 | |
|             return partial(
 | |
|                 get_vectors_loss, distance=L2Distance(normalize=True, ignore_zeros=True)
 | |
|             )
 | |
|         else:
 | |
|             raise ValueError("Unexpected loss type", config["loss"])
 | |
|     else:
 | |
|         raise ValueError("Unexpected objective_type", objective_type)
 | |
| 
 | |
| 
 | |
| def get_vectors_loss(ops, docs, prediction, distance):
 | |
|     """Compute a loss based on a distance between the documents' vectors and
 | |
|     the prediction.
 | |
|     """
 | |
|     # The simplest way to implement this would be to vstack the
 | |
|     # token.vector values, but that's a bit inefficient, especially on GPU.
 | |
|     # Instead we fetch the index into the vectors table for each of our tokens,
 | |
|     # and look them up all at once. This prevents data copying.
 | |
|     ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
 | |
|     target = docs[0].vocab.vectors.data[ids]
 | |
|     d_target, loss = distance(prediction, target)
 | |
|     return loss, d_target
 | |
| 
 | |
| 
 | |
| def get_characters_loss(ops, docs, prediction, nr_char):
 | |
|     """Compute a loss based on a number of characters predicted from the docs."""
 | |
|     target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
 | |
|     target_ids = target_ids.reshape((-1,))
 | |
|     target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
 | |
|     target = target.reshape((-1, 256 * nr_char))
 | |
|     diff = prediction - target
 | |
|     loss = (diff ** 2).sum()
 | |
|     d_target = diff / float(prediction.shape[0])
 | |
|     return loss, d_target
 | |
| 
 | |
| 
 | |
| def create_pretraining_model(nlp, pretrain_config):
 | |
|     """Define a network for the pretraining. We simply add an output layer onto
 | |
|     the tok2vec input model. The tok2vec input model needs to be a model that
 | |
|     takes a batch of Doc objects (as a list), and returns a list of arrays.
 | |
|     Each array in the output needs to have one row per token in the doc.
 | |
|     The actual tok2vec layer is stored as a reference, and only this bit will be
 | |
|     serialized to file and read back in when calling the 'train' command.
 | |
|     """
 | |
|     component = nlp.get_pipe(pretrain_config["component"])
 | |
|     if pretrain_config.get("layer"):
 | |
|         tok2vec = component.model.get_ref(pretrain_config["layer"])
 | |
|     else:
 | |
|         tok2vec = component.model
 | |
| 
 | |
|     # TODO
 | |
|     maxout_pieces = 3
 | |
|     hidden_size = 300
 | |
|     if pretrain_config["objective"]["type"] == "vectors":
 | |
|         model = build_cloze_multi_task_model(
 | |
|             nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
 | |
|         )
 | |
|     elif pretrain_config["objective"]["type"] == "characters":
 | |
|         model = build_cloze_characters_multi_task_model(
 | |
|             nlp.vocab,
 | |
|             tok2vec,
 | |
|             hidden_size=hidden_size,
 | |
|             maxout_pieces=maxout_pieces,
 | |
|             nr_char=pretrain_config["objective"]["n_characters"],
 | |
|         )
 | |
|     model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
 | |
|     set_dropout_rate(model, pretrain_config["dropout"])
 | |
|     return model
 | |
| 
 | |
| 
 | |
| class ProgressTracker:
 | |
|     def __init__(self, frequency=1000000):
 | |
|         self.loss = 0.0
 | |
|         self.prev_loss = 0.0
 | |
|         self.nr_word = 0
 | |
|         self.words_per_epoch = Counter()
 | |
|         self.frequency = frequency
 | |
|         self.last_time = time.time()
 | |
|         self.last_update = 0
 | |
|         self.epoch_loss = 0.0
 | |
| 
 | |
|     def update(self, epoch, loss, docs):
 | |
|         self.loss += loss
 | |
|         self.epoch_loss += loss
 | |
|         words_in_batch = sum(len(doc) for doc in docs)
 | |
|         self.words_per_epoch[epoch] += words_in_batch
 | |
|         self.nr_word += words_in_batch
 | |
|         words_since_update = self.nr_word - self.last_update
 | |
|         if words_since_update >= self.frequency:
 | |
|             wps = words_since_update / (time.time() - self.last_time)
 | |
|             self.last_update = self.nr_word
 | |
|             self.last_time = time.time()
 | |
|             loss_per_word = self.loss - self.prev_loss
 | |
|             status = (
 | |
|                 epoch,
 | |
|                 self.nr_word,
 | |
|                 _smart_round(self.loss, width=10),
 | |
|                 _smart_round(loss_per_word, width=6),
 | |
|                 int(wps),
 | |
|             )
 | |
|             self.prev_loss = float(self.loss)
 | |
|             return status
 | |
|         else:
 | |
|             return None
 | |
| 
 | |
| 
 | |
| def _smart_round(figure, width=10, max_decimal=4):
 | |
|     """Round large numbers as integers, smaller numbers as decimals."""
 | |
|     n_digits = len(str(int(figure)))
 | |
|     n_decimal = width - (n_digits + 1)
 | |
|     if n_decimal <= 1:
 | |
|         return str(int(figure))
 | |
|     else:
 | |
|         n_decimal = min(n_decimal, max_decimal)
 | |
|         format_str = "%." + str(n_decimal) + "f"
 | |
|         return format_str % figure
 | |
| 
 | |
| 
 | |
| def verify_cli_args(config_path, output_dir, resume_path, epoch_resume):
 | |
|     if not config_path or not config_path.exists():
 | |
|         msg.fail("Config file not found", config_path, exits=1)
 | |
|     if output_dir.exists() and [p for p in output_dir.iterdir()]:
 | |
|         if resume_path:
 | |
|             msg.warn(
 | |
|                 "Output directory is not empty.",
 | |
|                 "If you're resuming a run in this directory, the old weights "
 | |
|                 "for the consecutive epochs will be overwritten with the new ones.",
 | |
|             )
 | |
|         else:
 | |
|             msg.warn(
 | |
|                 "Output directory is not empty. ",
 | |
|                 "It is better to use an empty directory or refer to a new output path, "
 | |
|                 "then the new directory will be created for you.",
 | |
|             )
 | |
|     if resume_path is not None:
 | |
|         model_name = re.search(r"model\d+\.bin", str(resume_path))
 | |
|         if not model_name and not epoch_resume:
 | |
|             msg.fail(
 | |
|                 "You have to use the --epoch-resume setting when using a renamed weight file for --resume-path",
 | |
|                 exits=True,
 | |
|             )
 | |
|         elif not model_name and epoch_resume < 0:
 | |
|             msg.fail(
 | |
|                 f"The argument --epoch-resume has to be greater or equal to 0. {epoch_resume} is invalid",
 | |
|                 exits=True,
 | |
|             )
 |