mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			364 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > SPAN
 | |
| 
 | |
| include ../../_includes/_mixins
 | |
| 
 | |
| p A slice from a #[+api("doc") #[code Doc]] object.
 | |
| 
 | |
| +h(2, "init") Span.__init__
 | |
|     +tag method
 | |
| 
 | |
| p Create a Span object from the #[code slice doc[start : end]].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     span = doc[1:4]
 | |
|     assert [t.text for t in span] ==  [u'it', u'back', u'!']
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code doc]
 | |
|         +cell #[code Doc]
 | |
|         +cell The parent document.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code start]
 | |
|         +cell int
 | |
|         +cell The index of the first token of the span.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code end]
 | |
|         +cell int
 | |
|         +cell The index of the first token after the span.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code label]
 | |
|         +cell int
 | |
|         +cell A label to attach to the span, e.g. for named entities.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code vector]
 | |
|         +cell #[code numpy.ndarray[ndim=1, dtype='float32']]
 | |
|         +cell A meaning representation of the span.
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code Span]
 | |
|         +cell The newly constructed object.
 | |
| 
 | |
| +h(2, "getitem") Span.__getitem__
 | |
|     +tag method
 | |
| 
 | |
| p Get a #[code Token] object.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     span = doc[1:4]
 | |
|     assert span[1].text == 'back'
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code i]
 | |
|         +cell int
 | |
|         +cell The index of the token within the span.
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code Token]
 | |
|         +cell The token at #[code span[i]].
 | |
| 
 | |
| p Get a #[code Span] object.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     span = doc[1:4]
 | |
|     assert span[1:3].text == 'back!'
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code start_end]
 | |
|         +cell tuple
 | |
|         +cell The slice of the span to get.
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code Span]
 | |
|         +cell The span at #[code span[start : end]].
 | |
| 
 | |
| +h(2, "iter") Span.__iter__
 | |
|     +tag method
 | |
| 
 | |
| p Iterate over #[code Token] objects.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     span = doc[1:4]
 | |
|     assert [t.text for t in span] == ['it', 'back', '!']
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yields
 | |
|         +cell #[code Token]
 | |
|         +cell A #[code Token] object.
 | |
| 
 | |
| +h(2, "len") Span.__len__
 | |
|     +tag method
 | |
| 
 | |
| p Get the number of tokens in the span.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     span = doc[1:4]
 | |
|     assert len(span) == 3
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell int
 | |
|         +cell The number of tokens in the span.
 | |
| 
 | |
| +h(2, "similarity") Span.similarity
 | |
|     +tag method
 | |
|     +tag-model("vectors")
 | |
| 
 | |
| p
 | |
|     |  Make a semantic similarity estimate. The default estimate is cosine
 | |
|     |  similarity using an average of word vectors.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'green apples and red oranges')
 | |
|     green_apples = doc[:2]
 | |
|     red_oranges = doc[3:]
 | |
|     apples_oranges = green_apples.similarity(red_oranges)
 | |
|     oranges_apples = red_oranges.similarity(green_apples)
 | |
|     assert apples_oranges == oranges_apples
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code other]
 | |
|         +cell -
 | |
|         +cell
 | |
|             |  The object to compare with. By default, accepts #[code Doc],
 | |
|             |  #[code Span], #[code Token] and #[code Lexeme] objects.
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell float
 | |
|         +cell A scalar similarity score. Higher is more similar.
 | |
| 
 | |
| +h(2, "merge") Span.merge
 | |
|     +tag method
 | |
| 
 | |
| p Retokenize the document, such that the span is merged into a single token.
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code **attributes]
 | |
|         +cell -
 | |
|         +cell
 | |
|             |  Attributes to assign to the merged token. By default, attributes
 | |
|             |  are inherited from the syntactic root token of the span.
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code Token]
 | |
|         +cell The newly merged token.
 | |
| 
 | |
| +h(2, "root") Span.root
 | |
|     +tag property
 | |
|     +tag-model("parse")
 | |
| 
 | |
| p
 | |
|     |  The token within the span that's highest in the parse tree. If there's a
 | |
|     |  tie, the earlist is prefered.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'I like New York in Autumn.')
 | |
|     i, like, new, york, in_, autumn, dot = range(len(doc))
 | |
|     assert doc[new].head.text == 'York'
 | |
|     assert doc[york].head.text == 'like'
 | |
|     new_york = doc[new:york+1]
 | |
|     assert new_york.root.text == 'York'
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code Token]
 | |
|         +cell The root token.
 | |
| 
 | |
| +h(2, "lefts") Span.lefts
 | |
|     +tag property
 | |
|     +tag-model("parse")
 | |
| 
 | |
| p Tokens that are to the left of the span, whose head is within the span.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'I like New York in Autumn.')
 | |
|     lefts = [t.text for t in doc[3:7].lefts]
 | |
|     assert lefts == [u'New']
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yields
 | |
|         +cell #[code Token]
 | |
|         +cell A left-child of a token of the span.
 | |
| 
 | |
| +h(2, "rights") Span.rights
 | |
|     +tag property
 | |
|     +tag-model("parse")
 | |
| 
 | |
| p Tokens that are to the right of the span, whose head is within the span.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'I like New York in Autumn.')
 | |
|     rights = [t.text for t in doc[2:4].rights]
 | |
|     assert rights == [u'in']
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yields
 | |
|         +cell #[code Token]
 | |
|         +cell A right-child of a token of the span.
 | |
| 
 | |
| +h(2, "subtree") Span.subtree
 | |
|     +tag property
 | |
|     +tag-model("parse")
 | |
| 
 | |
| p Tokens that descend from tokens in the span, but fall outside it.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'Give it back! He pleaded.')
 | |
|     subtree = [t.text for t in doc[:3].subtree]
 | |
|     assert subtree == [u'Give', u'it', u'back', u'!']
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell yields
 | |
|         +cell #[code Token]
 | |
|         +cell A descendant of a token within the span.
 | |
| 
 | |
| +h(2, "has_vector") Span.has_vector
 | |
|     +tag property
 | |
|     +tag-model("vectors")
 | |
| 
 | |
| p
 | |
|     |  A boolean value indicating whether a word vector is associated with the
 | |
|     |  object.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'I like apples')
 | |
|     assert doc[1:].has_vector
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell bool
 | |
|         +cell Whether the span has a vector data attached.
 | |
| 
 | |
| +h(2, "vector") Span.vector
 | |
|     +tag property
 | |
|     +tag-model("vectors")
 | |
| 
 | |
| p
 | |
|     |  A real-valued meaning representation. Defaults to an average of the
 | |
|     |  token vectors.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'I like apples')
 | |
|     assert doc[1:].vector.dtype == 'float32'
 | |
|     assert doc[1:].vector.shape == (300,)
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code numpy.ndarray[ndim=1, dtype='float32']]
 | |
|         +cell A 1D numpy array representing the span's semantics.
 | |
| 
 | |
| +h(2, "vector_norm") Span.vector_norm
 | |
|     +tag property
 | |
|     +tag-model("vectors")
 | |
| 
 | |
| p
 | |
|     |  The L2 norm of the span's vector representation.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     doc = nlp(u'I like apples')
 | |
|     doc[1:].vector_norm # 4.800883928527915
 | |
|     doc[2:].vector_norm # 6.895897646384268
 | |
|     assert doc[1:].vector_norm != doc[2:].vector_norm
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell float
 | |
|         +cell The L2 norm of the vector representation.
 | |
| 
 | |
| +h(2, "attributes") Attributes
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code doc]
 | |
|         +cell #[code Doc]
 | |
|         +cell The parent document.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code sent]
 | |
|         +cell #[code Span]
 | |
|         +cell The sentence span that this span is a part of.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code start]
 | |
|         +cell int
 | |
|         +cell The token offset for the start of the span.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code end]
 | |
|         +cell int
 | |
|         +cell The token offset for the end of the span.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code start_char]
 | |
|         +cell int
 | |
|         +cell The character offset for the start of the span.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code end_char]
 | |
|         +cell int
 | |
|         +cell The character offset for the end of the span.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code text]
 | |
|         +cell unicode
 | |
|         +cell A unicode representation of the span text.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code text_with_ws]
 | |
|         +cell unicode
 | |
|         +cell
 | |
|             |  The text content of the span with a trailing whitespace character
 | |
|             |  if the last token has one.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code label]
 | |
|         +cell int
 | |
|         +cell The span's label.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code label_]
 | |
|         +cell unicode
 | |
|         +cell The span's label.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code lemma_]
 | |
|         +cell unicode
 | |
|         +cell The span's lemma.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code ent_id]
 | |
|         +cell int
 | |
|         +cell The integer ID of the named entity the token is an instance of.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code ent_id_]
 | |
|         +cell unicode
 | |
|         +cell The string ID of the named entity the token is an instance of.
 |