mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-15 06:09:01 +03:00
188 lines
6.3 KiB
Cython
188 lines
6.3 KiB
Cython
# cython: infer_types=True, binding=True
|
|
from itertools import islice
|
|
from typing import Callable, Optional
|
|
|
|
from thinc.api import Config, Model, SequenceCategoricalCrossentropy
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from .. import util
|
|
from ..errors import Errors
|
|
from ..language import Language
|
|
from ..scorer import Scorer
|
|
from ..training import validate_examples, validate_get_examples
|
|
from ..util import registry
|
|
from .tagger import Tagger
|
|
|
|
# See #9050
|
|
BACKWARD_OVERWRITE = False
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.Tagger.v2"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v2"
|
|
pretrained_vectors = null
|
|
width = 12
|
|
depth = 1
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 2
|
|
subword_features = true
|
|
"""
|
|
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"senter",
|
|
assigns=["token.is_sent_start"],
|
|
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
)
|
|
def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
|
|
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
|
|
|
|
|
|
def senter_score(examples, **kwargs):
|
|
def has_sents(doc):
|
|
return doc.has_annotation("SENT_START")
|
|
|
|
results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)
|
|
del results["sents_per_type"]
|
|
return results
|
|
|
|
|
|
@registry.scorers("spacy.senter_scorer.v1")
|
|
def make_senter_scorer():
|
|
return senter_score
|
|
|
|
|
|
class SentenceRecognizer(Tagger):
|
|
"""Pipeline component for sentence segmentation.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer
|
|
"""
|
|
def __init__(
|
|
self,
|
|
vocab,
|
|
model,
|
|
name="senter",
|
|
*,
|
|
overwrite=BACKWARD_OVERWRITE,
|
|
scorer=senter_score,
|
|
):
|
|
"""Initialize a sentence recognizer.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_spans for the attribute "sents".
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._rehearsal_model = None
|
|
self.cfg = {"overwrite": overwrite}
|
|
self.scorer = scorer
|
|
|
|
@property
|
|
def labels(self):
|
|
"""RETURNS (Tuple[str]): The labels."""
|
|
# labels are numbered by index internally, so this matches GoldParse
|
|
# and Example where the sentence-initial tag is 1 and other positions
|
|
# are 0
|
|
return tuple(["I", "S"])
|
|
|
|
@property
|
|
def hide_labels(self):
|
|
return True
|
|
|
|
@property
|
|
def label_data(self):
|
|
return None
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
"""Modify a batch of documents, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef bint overwrite = self.cfg["overwrite"]
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, "get"):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
if doc.c[j].sent_start == 0 or overwrite:
|
|
if tag_id == 1:
|
|
doc.c[j].sent_start = 1
|
|
else:
|
|
doc.c[j].sent_start = -1
|
|
|
|
def get_loss(self, examples, scores):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#get_loss
|
|
"""
|
|
validate_examples(examples, "SentenceRecognizer.get_loss")
|
|
labels = self.labels
|
|
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
|
|
truths = []
|
|
for eg in examples:
|
|
eg_truth = []
|
|
for x in eg.get_aligned("SENT_START"):
|
|
if x is None:
|
|
eg_truth.append(None)
|
|
elif x == 1:
|
|
eg_truth.append(labels[1])
|
|
else:
|
|
# anything other than 1: 0, -1, -1 as uint64
|
|
eg_truth.append(labels[0])
|
|
truths.append(eg_truth)
|
|
d_scores, loss = loss_func(scores, truths)
|
|
if self.model.ops.xp.isnan(loss):
|
|
raise ValueError(Errors.E910.format(name=self.name))
|
|
return float(loss), d_scores
|
|
|
|
def initialize(self, get_examples, *, nlp=None):
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "SentenceRecognizer.initialize")
|
|
util.check_lexeme_norms(self.vocab, "senter")
|
|
doc_sample = []
|
|
label_sample = []
|
|
assert self.labels, Errors.E924.format(name=self.name)
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.x)
|
|
gold_tags = example.get_aligned("SENT_START")
|
|
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
|
|
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=doc_sample, Y=label_sample)
|
|
|
|
def add_label(self, label, values=None):
|
|
raise NotImplementedError
|