1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-16 12:36:23 +03:00
spaCy/spacy/matcher/matcher.pyx

1220 lines
49 KiB
Cython

# cython: binding=True, infer_types=True
from typing import Iterable, List
from cymem.cymem cimport Pool
from libc.stdint cimport int8_t, int32_t
from libc.string cimport memcmp, memset
from libcpp.vector cimport vector
from murmurhash.mrmr cimport hash64
import re
import warnings
import srsly
from ..attrs cimport DEP, ENT_IOB, ID, LEMMA, MORPH, NULL_ATTR, POS, TAG
from ..structs cimport TokenC
from ..tokens.doc cimport Doc, get_token_attr_for_matcher
from ..tokens.morphanalysis cimport MorphAnalysis
from ..tokens.span cimport Span
from ..tokens.token cimport Token
from ..typedefs cimport attr_t
from ..attrs import IDS
from ..errors import Errors, MatchPatternError, Warnings
from ..schemas import validate_token_pattern
from ..strings import get_string_id
from .levenshtein import levenshtein_compare
DEF PADDING = 5
cdef class Matcher:
"""Match sequences of tokens, based on pattern rules.
DOCS: https://spacy.io/api/matcher
USAGE: https://spacy.io/usage/rule-based-matching
"""
def __init__(self, vocab, validate=True, *, fuzzy_compare=levenshtein_compare):
"""Create the Matcher.
vocab (Vocab): The vocabulary object, which must be shared with the
validate (bool): Validate all patterns added to this matcher.
fuzzy_compare (Callable[[str, str, int], bool]): The comparison method
for the FUZZY operators.
"""
self._extra_predicates = []
self._patterns = {}
self._callbacks = {}
self._filter = {}
self._extensions = {}
self._seen_attrs = set()
self.vocab = vocab
self.mem = Pool()
self.validate = validate
self._fuzzy_compare = fuzzy_compare
def __reduce__(self):
data = (self.vocab, self._patterns, self._callbacks, self.validate, self._fuzzy_compare)
return (unpickle_matcher, data, None, None)
def __len__(self):
"""Get the number of rules added to the matcher. Note that this only
returns the number of rules (identical with the number of IDs), not the
number of individual patterns.
RETURNS (int): The number of rules.
"""
return len(self._patterns)
def __contains__(self, key):
"""Check whether the matcher contains rules for a match ID.
key (str): The match ID.
RETURNS (bool): Whether the matcher contains rules for this match ID.
"""
return self.has_key(key) # no-cython-lint: W601
def add(self, key, patterns, *, on_match=None, greedy: str = None):
"""Add a match-rule to the matcher. A match-rule consists of: an ID
key, an on_match callback, and one or more patterns.
If the key exists, the patterns are appended to the previous ones, and
the previous on_match callback is replaced. The `on_match` callback
will receive the arguments `(matcher, doc, i, matches)`. You can also
set `on_match` to `None` to not perform any actions.
A pattern consists of one or more `token_specs`, where a `token_spec`
is a dictionary mapping attribute IDs to values, and optionally a
quantifier operator under the key "op". The available quantifiers are:
'!': Negate the pattern, by requiring it to match exactly 0 times.
'?': Make the pattern optional, by allowing it to match 0 or 1 times.
'+': Require the pattern to match 1 or more times.
'*': Allow the pattern to zero or more times.
'{n}': Require the pattern to match exactly _n_ times.
'{n,m}': Require the pattern to match at least _n_ but not more than _m_ times.
'{n,}': Require the pattern to match at least _n_ times.
'{,m}': Require the pattern to match at most _m_ times.
The + and * operators return all possible matches (not just the greedy
ones). However, the "greedy" argument can filter the final matches
by returning a non-overlapping set per key, either taking preference to
the first greedy match ("FIRST"), or the longest ("LONGEST").
Since spaCy v2.2.2, Matcher.add takes a list of patterns as the second
argument, and the on_match callback is an optional keyword argument.
key (Union[str, int]): The match ID.
patterns (list): The patterns to add for the given key.
on_match (callable): Optional callback executed on match.
greedy (str): Optional filter: "FIRST" or "LONGEST".
"""
errors = {}
if on_match is not None and not hasattr(on_match, "__call__"):
raise ValueError(Errors.E171.format(arg_type=type(on_match)))
if patterns is None or not isinstance(patterns, List): # old API
raise ValueError(Errors.E948.format(arg_type=type(patterns)))
if greedy is not None and greedy not in ["FIRST", "LONGEST"]:
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=greedy))
for i, pattern in enumerate(patterns):
if len(pattern) == 0:
raise ValueError(Errors.E012.format(key=key))
if not isinstance(pattern, list):
raise ValueError(Errors.E178.format(pat=pattern, key=key))
if self.validate:
errors[i] = validate_token_pattern(pattern)
if any(err for err in errors.values()):
raise MatchPatternError(key, errors)
key = self._normalize_key(key)
for pattern in patterns:
try:
specs = _preprocess_pattern(
pattern,
self.vocab,
self._extensions,
self._extra_predicates,
self._fuzzy_compare
)
self.patterns.push_back(init_pattern(self.mem, key, specs))
for spec in specs:
for attr, _ in spec[1]:
self._seen_attrs.add(attr)
except OverflowError, AttributeError:
raise ValueError(Errors.E154.format()) from None
self._patterns.setdefault(key, [])
self._callbacks[key] = on_match
self._filter[key] = greedy
self._patterns[key].extend(patterns)
def _require_patterns(self) -> None:
"""Raise a warning if this component has no patterns defined."""
if len(self) == 0:
warnings.warn(Warnings.W036.format(name="matcher"))
def remove(self, key):
"""Remove a rule from the matcher. A KeyError is raised if the key does
not exist.
key (str): The ID of the match rule.
"""
norm_key = self._normalize_key(key)
if norm_key not in self._patterns:
raise ValueError(Errors.E175.format(key=key))
self._patterns.pop(norm_key)
self._callbacks.pop(norm_key)
cdef int i = 0
while i < self.patterns.size():
pattern_key = get_ent_id(self.patterns.at(i))
if pattern_key == norm_key:
self.patterns.erase(self.patterns.begin()+i)
else:
i += 1
def has_key(self, key):
"""Check whether the matcher has a rule with a given key.
key (string or int): The key to check.
RETURNS (bool): Whether the matcher has the rule.
"""
return self._normalize_key(key) in self._patterns
def get(self, key, default=None):
"""Retrieve the pattern stored for a key.
key (str / int): The key to retrieve.
RETURNS (tuple): The rule, as an (on_match, patterns) tuple.
"""
key = self._normalize_key(key)
if key not in self._patterns:
return default
return (self._callbacks[key], self._patterns[key])
def pipe(self, docs, batch_size=1000, return_matches=False, as_tuples=False):
"""Match a stream of documents, yielding them in turn. Deprecated as of
spaCy v3.0.
"""
warnings.warn(Warnings.W105.format(matcher="Matcher"), DeprecationWarning)
if as_tuples:
for doc, context in docs:
matches = self(doc)
if return_matches:
yield ((doc, matches), context)
else:
yield (doc, context)
else:
for doc in docs:
matches = self(doc)
if return_matches:
yield (doc, matches)
else:
yield doc
def __call__(self, object doclike, *, as_spans=False, allow_missing=False, with_alignments=False):
"""Find all token sequences matching the supplied pattern.
doclike (Doc or Span): The document to match over.
as_spans (bool): Return Span objects with labels instead of (match_id,
start, end) tuples.
allow_missing (bool): Whether to skip checks for missing annotation for
attributes included in patterns. Defaults to False.
with_alignments (bool): Return match alignment information, which is
`List[int]` with length of matched span. Each entry denotes the
corresponding index of token pattern. If as_spans is set to True,
this setting is ignored.
RETURNS (list): A list of `(match_id, start, end)` tuples,
describing the matches. A match tuple describes a span
`doc[start:end]`. The `match_id` is an integer. If as_spans is set
to True, a list of Span objects is returned.
If with_alignments is set to True and as_spans is set to False,
A list of `(match_id, start, end, alignments)` tuples is returned.
"""
self._require_patterns()
if isinstance(doclike, Doc):
doc = doclike
length = len(doc)
elif isinstance(doclike, Span):
doc = doclike.doc
length = doclike.end - doclike.start
else:
raise ValueError(Errors.E195.format(good="Doc or Span", got=type(doclike).__name__))
# Skip alignments calculations if as_spans is set
if as_spans:
with_alignments = False
cdef Pool tmp_pool = Pool()
if not allow_missing:
for attr in (TAG, POS, MORPH, LEMMA, DEP):
if attr in self._seen_attrs and not doc.has_annotation(attr):
if attr == TAG:
pipe = "tagger"
elif attr in (POS, MORPH):
pipe = "morphologizer or tagger+attribute_ruler"
elif attr == LEMMA:
pipe = "lemmatizer"
elif attr == DEP:
pipe = "parser"
error_msg = Errors.E155.format(pipe=pipe, attr=self.vocab.strings.as_string(attr))
raise ValueError(error_msg)
if self.patterns.empty():
matches = []
else:
matches = find_matches(
&self.patterns[0],
self.patterns.size(),
doclike,
length,
extensions=self._extensions,
predicates=self._extra_predicates,
with_alignments=with_alignments
)
final_matches = []
pairs_by_id = {}
# For each key, either add all matches, or only the filtered,
# non-overlapping ones this `match` can be either (start, end) or
# (start, end, alignments) depending on `with_alignments=` option.
for key, *match in matches:
span_filter = self._filter.get(key)
if span_filter is not None:
pairs = pairs_by_id.get(key, [])
pairs.append(match)
pairs_by_id[key] = pairs
else:
final_matches.append((key, *match))
matched = <char*>tmp_pool.alloc(length, sizeof(char))
empty = <char*>tmp_pool.alloc(length, sizeof(char))
for key, pairs in pairs_by_id.items():
memset(matched, 0, length * sizeof(matched[0]))
span_filter = self._filter.get(key)
if span_filter == "FIRST":
sorted_pairs = sorted(pairs, key=lambda x: (x[0], -x[1]), reverse=False) # sort by start
elif span_filter == "LONGEST":
sorted_pairs = sorted(pairs, key=lambda x: (x[1]-x[0], -x[0]), reverse=True) # reverse sort by length
else:
raise ValueError(Errors.E947.format(expected=["FIRST", "LONGEST"], arg=span_filter))
for match in sorted_pairs:
start, end = match[:2]
assert 0 <= start < end # Defend against segfaults
span_len = end-start
# If no tokens in the span have matched
if memcmp(&matched[start], &empty[start], span_len * sizeof(matched[0])) == 0:
final_matches.append((key, *match))
# Mark tokens that have matched
memset(&matched[start], 1, span_len * sizeof(matched[0]))
if as_spans:
final_results = []
for key, start, end, *_ in final_matches:
if isinstance(doclike, Span):
start += doclike.start
end += doclike.start
final_results.append(Span(doc, start, end, label=key))
elif with_alignments:
# convert alignments List[Dict[str, int]] --> List[int]
# when multiple alignment (belongs to the same length) is found,
# keeps the alignment that has largest token_idx
final_results = []
for key, start, end, alignments in final_matches:
sorted_alignments = sorted(alignments, key=lambda x: (x['length'], x['token_idx']), reverse=False)
alignments = [0] * (end-start)
for align in sorted_alignments:
if align['length'] >= end-start:
continue
# Since alignments are sorted in order of (length, token_idx)
# this overwrites smaller token_idx when they have same length.
alignments[align['length']] = align['token_idx']
final_results.append((key, start, end, alignments))
final_matches = final_results # for callbacks
else:
final_results = final_matches
# perform the callbacks on the filtered set of results
for i, (key, *_) in enumerate(final_matches):
on_match = self._callbacks.get(key, None)
if on_match is not None:
on_match(self, doc, i, final_matches)
return final_results
def _normalize_key(self, key):
if isinstance(key, str):
return self.vocab.strings.add(key)
else:
return key
def unpickle_matcher(vocab, patterns, callbacks, validate, fuzzy_compare):
matcher = Matcher(vocab, validate=validate, fuzzy_compare=fuzzy_compare)
for key, pattern in patterns.items():
callback = callbacks.get(key, None)
matcher.add(key, pattern, on_match=callback)
return matcher
cdef find_matches(TokenPatternC** patterns, int n, object doclike, int length, extensions=None, predicates=tuple(), bint with_alignments=0):
"""Find matches in a doc, with a compiled array of patterns. Matches are
returned as a list of (id, start, end) tuples or (id, start, end, alignments) tuples (if with_alignments != 0)
To augment the compiled patterns, we optionally also take two Python lists.
The "predicates" list contains functions that take a Python list and return a
boolean value. It's mostly used for regular expressions.
The "extensions" list contains functions that take a Python list and return
an attr ID. It's mostly used for extension attributes.
"""
cdef vector[PatternStateC] states
cdef vector[MatchC] matches
cdef vector[vector[MatchAlignmentC]] align_states
cdef vector[vector[MatchAlignmentC]] align_matches
cdef int i, j, nr_extra_attr
cdef Pool mem = Pool()
output = []
if length == 0:
# avoid any processing or mem alloc if the document is empty
return output
if len(predicates) > 0:
predicate_cache = <int8_t*>mem.alloc(length * len(predicates), sizeof(int8_t))
if extensions is not None and len(extensions) >= 1:
nr_extra_attr = max(extensions.values()) + 1
extra_attr_values = <attr_t*>mem.alloc(length * nr_extra_attr, sizeof(attr_t))
else:
nr_extra_attr = 0
extra_attr_values = <attr_t*>mem.alloc(length, sizeof(attr_t))
for i, token in enumerate(doclike):
for name, index in extensions.items():
value = token._.get(name)
if isinstance(value, str):
value = token.vocab.strings[value]
extra_attr_values[i * nr_extra_attr + index] = value
# Main loop
for i in range(length):
for j in range(n):
states.push_back(PatternStateC(patterns[j], i, 0))
if with_alignments != 0:
align_states.resize(states.size())
transition_states(
states,
matches,
align_states,
align_matches,
predicate_cache,
doclike[i],
extra_attr_values,
predicates,
with_alignments
)
extra_attr_values += nr_extra_attr
predicate_cache += len(predicates)
# Handle matches that end in 0-width patterns
finish_states(matches, states, align_matches, align_states, with_alignments)
seen = set()
for i in range(matches.size()):
match = (
matches[i].pattern_id,
matches[i].start,
matches[i].start+matches[i].length
)
# We need to deduplicate, because we could otherwise arrive at the same
# match through two paths, e.g. .?.? matching 'a'. Are we matching the
# first .?, or the second .? -- it doesn't matter, it's just one match.
# Skip 0-length matches. (TODO: fix algorithm)
if match not in seen and matches[i].length > 0:
if with_alignments != 0:
# since the length of align_matches equals to that of match, we can share same 'i'
output.append(match + (align_matches[i],))
else:
output.append(match)
seen.add(match)
return output
cdef void transition_states(
vector[PatternStateC]& states,
vector[MatchC]& matches,
vector[vector[MatchAlignmentC]]& align_states,
vector[vector[MatchAlignmentC]]& align_matches,
int8_t* cached_py_predicates,
Token token,
const attr_t* extra_attrs,
py_predicates,
bint with_alignments
) except *:
cdef int q = 0
cdef vector[PatternStateC] new_states
cdef vector[vector[MatchAlignmentC]] align_new_states
for i in range(states.size()):
if states[i].pattern.nr_py >= 1:
update_predicate_cache(
cached_py_predicates,
states[i].pattern,
token,
py_predicates
)
action = get_action(states[i], token.c, extra_attrs,
cached_py_predicates)
if action == REJECT:
continue
# Keep only a subset of states (the active ones). Index q is the
# states which are still alive. If we reject a state, we overwrite
# it in the states list, because q doesn't advance.
state = states[i]
states[q] = state
# Separate from states, performance is guaranteed for users who only need basic options (without alignments).
# `align_states` always corresponds to `states` 1:1.
if with_alignments != 0:
align_state = align_states[i]
align_states[q] = align_state
while action in (RETRY, RETRY_ADVANCE, RETRY_EXTEND):
# Update alignment before the transition of current state
# 'MatchAlignmentC' maps 'original token index of current pattern' to 'current matching length'
if with_alignments != 0:
align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length))
if action == RETRY_EXTEND:
# This handles the 'extend'
new_states.push_back(
PatternStateC(pattern=states[q].pattern, start=state.start,
length=state.length+1))
if with_alignments != 0:
align_new_states.push_back(align_states[q])
if action == RETRY_ADVANCE:
# This handles the 'advance'
new_states.push_back(
PatternStateC(pattern=states[q].pattern+1, start=state.start,
length=state.length+1))
if with_alignments != 0:
align_new_states.push_back(align_states[q])
states[q].pattern += 1
if states[q].pattern.nr_py != 0:
update_predicate_cache(
cached_py_predicates,
states[q].pattern,
token,
py_predicates
)
action = get_action(states[q], token.c, extra_attrs,
cached_py_predicates)
# Update alignment before the transition of current state
if with_alignments != 0:
align_states[q].push_back(MatchAlignmentC(states[q].pattern.token_idx, states[q].length))
if action == REJECT:
pass
elif action == ADVANCE:
states[q].pattern += 1
states[q].length += 1
q += 1
else:
ent_id = get_ent_id(state.pattern)
if action == MATCH:
matches.push_back(
MatchC(
pattern_id=ent_id,
start=state.start,
length=state.length+1
)
)
# `align_matches` always corresponds to `matches` 1:1
if with_alignments != 0:
align_matches.push_back(align_states[q])
elif action == MATCH_DOUBLE:
# push match without last token if length > 0
if state.length > 0:
matches.push_back(
MatchC(
pattern_id=ent_id,
start=state.start,
length=state.length
)
)
# MATCH_DOUBLE emits matches twice,
# add one more to align_matches in order to keep 1:1 relationship
if with_alignments != 0:
align_matches.push_back(align_states[q])
# push match with last token
matches.push_back(
MatchC(
pattern_id=ent_id,
start=state.start,
length=state.length + 1
)
)
# `align_matches` always corresponds to `matches` 1:1
if with_alignments != 0:
align_matches.push_back(align_states[q])
elif action == MATCH_REJECT:
matches.push_back(
MatchC(
pattern_id=ent_id,
start=state.start,
length=state.length
)
)
# `align_matches` always corresponds to `matches` 1:1
if with_alignments != 0:
align_matches.push_back(align_states[q])
elif action == MATCH_EXTEND:
matches.push_back(
MatchC(pattern_id=ent_id, start=state.start,
length=state.length))
# `align_matches` always corresponds to `matches` 1:1
if with_alignments != 0:
align_matches.push_back(align_states[q])
states[q].length += 1
q += 1
states.resize(q)
for i in range(new_states.size()):
states.push_back(new_states[i])
# `align_states` always corresponds to `states` 1:1
if with_alignments != 0:
align_states.resize(q)
for i in range(align_new_states.size()):
align_states.push_back(align_new_states[i])
cdef int update_predicate_cache(
int8_t* cache,
const TokenPatternC* pattern,
Token token,
predicates
) except -1:
# If the state references any extra predicates, check whether they match.
# These are cached, so that we don't call these potentially expensive
# Python functions more than we need to.
for i in range(pattern.nr_py):
index = pattern.py_predicates[i]
if cache[index] == 0:
predicate = predicates[index]
result = predicate(token)
if result is True:
cache[index] = 1
elif result is False:
cache[index] = -1
elif result is None:
pass
else:
raise ValueError(Errors.E125.format(value=result))
cdef void finish_states(vector[MatchC]& matches, vector[PatternStateC]& states,
vector[vector[MatchAlignmentC]]& align_matches,
vector[vector[MatchAlignmentC]]& align_states,
bint with_alignments) except *:
"""Handle states that end in zero-width patterns."""
cdef PatternStateC state
cdef vector[MatchAlignmentC] align_state
for i in range(states.size()):
state = states[i]
if with_alignments != 0:
align_state = align_states[i]
while get_quantifier(state) in (ZERO_PLUS, ZERO_ONE):
# Update alignment before the transition of current state
if with_alignments != 0:
align_state.push_back(MatchAlignmentC(state.pattern.token_idx, state.length))
is_final = get_is_final(state)
if is_final:
ent_id = get_ent_id(state.pattern)
# `align_matches` always corresponds to `matches` 1:1
if with_alignments != 0:
align_matches.push_back(align_state)
matches.push_back(
MatchC(pattern_id=ent_id, start=state.start, length=state.length))
break
else:
state.pattern += 1
cdef action_t get_action(
PatternStateC state,
const TokenC * token,
const attr_t * extra_attrs,
const int8_t * predicate_matches
) nogil:
"""We need to consider:
a) Does the token match the specification? [Yes, No]
b) What's the quantifier? [1, 0+, ?]
c) Is this the last specification? [final, non-final]
We can transition in the following ways:
a) Do we emit a match?
b) Do we add a state with (next state, next token)?
c) Do we add a state with (next state, same token)?
d) Do we add a state with (same state, next token)?
We'll code the actions as boolean strings, so 0000 means no to all 4,
1000 means match but no states added, etc.
1:
Yes, final:
1000
Yes, non-final:
0100
No, final:
0000
No, non-final
0000
0+:
Yes, final:
1001
Yes, non-final:
0011
No, final:
1000 (note: Don't include last token!)
No, non-final:
0010
?:
Yes, final:
1000
Yes, non-final:
0100
No, final:
1000 (note: Don't include last token!)
No, non-final:
0010
Possible combinations: 1000, 0100, 0000, 1001, 0110, 0011, 0010,
We'll name the bits "match", "advance", "retry", "extend"
REJECT = 0000
MATCH = 1000
ADVANCE = 0100
RETRY = 0010
MATCH_EXTEND = 1001
RETRY_ADVANCE = 0110
RETRY_EXTEND = 0011
MATCH_REJECT = 2000 # Match, but don't include last token
MATCH_DOUBLE = 3000 # Match both with and without last token
Problem: If a quantifier is matching, we're adding a lot of open partials
"""
cdef int8_t is_match
is_match = get_is_match(state, token, extra_attrs, predicate_matches)
quantifier = get_quantifier(state)
is_final = get_is_final(state)
if quantifier == ZERO:
is_match = not is_match
quantifier = ONE
if quantifier == ONE:
if is_match and is_final:
# Yes, final: 1000
return MATCH
elif is_match and not is_final:
# Yes, non-final: 0100
return ADVANCE
elif not is_match and is_final:
# No, final: 0000
return REJECT
else:
return REJECT
elif quantifier == ZERO_PLUS:
if is_match and is_final:
# Yes, final: 1001
return MATCH_EXTEND
elif is_match and not is_final:
# Yes, non-final: 0011
return RETRY_EXTEND
elif not is_match and is_final:
# No, final 2000 (note: Don't include last token!)
return MATCH_REJECT
else:
# No, non-final 0010
return RETRY
elif quantifier == ZERO_ONE:
if is_match and is_final:
# Yes, final: 3000
# To cater for a pattern ending in "?", we need to add
# a match both with and without the last token
return MATCH_DOUBLE
elif is_match and not is_final:
# Yes, non-final: 0110
# We need both branches here, consider a pair like:
# pattern: .?b string: b
# If we 'ADVANCE' on the .?, we miss the match.
return RETRY_ADVANCE
elif not is_match and is_final:
# No, final 2000 (note: Don't include last token!)
return MATCH_REJECT
else:
# No, non-final 0010
return RETRY
cdef int8_t get_is_match(
PatternStateC state,
const TokenC* token,
const attr_t* extra_attrs,
const int8_t* predicate_matches
) nogil:
for i in range(state.pattern.nr_py):
if predicate_matches[state.pattern.py_predicates[i]] == -1:
return 0
spec = state.pattern
if spec.nr_attr > 0:
for attr in spec.attrs[:spec.nr_attr]:
if get_token_attr_for_matcher(token, attr.attr) != attr.value:
return 0
for i in range(spec.nr_extra_attr):
if spec.extra_attrs[i].value != extra_attrs[spec.extra_attrs[i].index]:
return 0
return True
cdef inline int8_t get_is_final(PatternStateC state) nogil:
if state.pattern[1].quantifier == FINAL_ID:
return 1
else:
return 0
cdef inline int8_t get_quantifier(PatternStateC state) nogil:
return state.pattern.quantifier
cdef TokenPatternC* init_pattern(Pool mem, attr_t entity_id, object token_specs) except NULL:
pattern = <TokenPatternC*>mem.alloc(len(token_specs) + 1, sizeof(TokenPatternC))
cdef int i, index
for i, (quantifier, spec, extensions, predicates, token_idx) in enumerate(token_specs):
pattern[i].quantifier = quantifier
# Ensure attrs refers to a null pointer if nr_attr == 0
if len(spec) > 0:
pattern[i].attrs = <AttrValueC*>mem.alloc(len(spec), sizeof(AttrValueC))
pattern[i].nr_attr = len(spec)
for j, (attr, value) in enumerate(spec):
pattern[i].attrs[j].attr = attr
pattern[i].attrs[j].value = value
if len(extensions) > 0:
pattern[i].extra_attrs = <IndexValueC*>mem.alloc(len(extensions), sizeof(IndexValueC))
for j, (index, value) in enumerate(extensions):
pattern[i].extra_attrs[j].index = index
pattern[i].extra_attrs[j].value = value
pattern[i].nr_extra_attr = len(extensions)
if len(predicates) > 0:
pattern[i].py_predicates = <int32_t*>mem.alloc(len(predicates), sizeof(int32_t))
for j, index in enumerate(predicates):
pattern[i].py_predicates[j] = index
pattern[i].nr_py = len(predicates)
pattern[i].key = hash64(pattern[i].attrs, pattern[i].nr_attr * sizeof(AttrValueC), 0)
pattern[i].token_idx = token_idx
i = len(token_specs)
# Use quantifier to identify final ID pattern node (rather than previous
# uninitialized quantifier == 0/ZERO + nr_attr == 0 + non-zero-length attrs)
pattern[i].quantifier = FINAL_ID
pattern[i].attrs = <AttrValueC*>mem.alloc(1, sizeof(AttrValueC))
pattern[i].attrs[0].attr = ID
pattern[i].attrs[0].value = entity_id
pattern[i].nr_attr = 1
pattern[i].nr_extra_attr = 0
pattern[i].nr_py = 0
pattern[i].token_idx = -1
return pattern
cdef attr_t get_ent_id(const TokenPatternC* pattern) nogil:
while pattern.quantifier != FINAL_ID:
pattern += 1
id_attr = pattern[0].attrs[0]
if id_attr.attr != ID:
with gil:
raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr))
return id_attr.value
def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates, fuzzy_compare):
"""This function interprets the pattern, converting the various bits of
syntactic sugar before we compile it into a struct with init_pattern.
We need to split the pattern up into four parts:
* Normal attribute/value pairs, which are stored on either the token or lexeme,
can be handled directly.
* Extension attributes are handled specially, as we need to prefetch the
values from Python for the doc before we begin matching.
* Extra predicates also call Python functions, so we have to create the
functions and store them. So we store these specially as well.
* Extension attributes that have extra predicates are stored within the
extra_predicates.
* Token index that this pattern belongs to.
"""
tokens = []
string_store = vocab.strings
for token_idx, spec in enumerate(token_specs):
if not spec:
# Signifier for 'any token'
tokens.append((ONE, [(NULL_ATTR, 0)], [], [], token_idx))
continue
if not isinstance(spec, dict):
raise ValueError(Errors.E154.format())
ops = _get_operators(spec)
attr_values = _get_attr_values(spec, string_store)
extensions = _get_extensions(spec, string_store, extensions_table)
predicates = _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare)
for op in ops:
tokens.append((op, list(attr_values), list(extensions), list(predicates), token_idx))
return tokens
def _get_attr_values(spec, string_store):
attr_values = []
for attr, value in spec.items():
input_attr = attr
if isinstance(attr, str):
attr = attr.upper()
if attr == '_':
continue
elif attr == "OP":
continue
if attr == "TEXT":
attr = "ORTH"
if attr == "IS_SENT_START":
attr = "SENT_START"
attr = IDS.get(attr)
if isinstance(value, str):
if attr == ENT_IOB and value in Token.iob_strings():
value = Token.iob_strings().index(value)
else:
value = string_store.add(value)
elif isinstance(value, bool):
value = int(value)
elif isinstance(value, int):
pass
elif isinstance(value, dict):
continue
else:
raise ValueError(Errors.E153.format(vtype=type(value).__name__))
if attr is not None:
attr_values.append((attr, value))
else:
# should be caught in validation
raise ValueError(Errors.E152.format(attr=input_attr))
return attr_values
def _predicate_cache_key(attr, predicate, value, *, regex=False, fuzzy=None):
# tuple order affects performance
return (attr, regex, fuzzy, predicate, srsly.json_dumps(value, sort_keys=True))
# These predicate helper classes are used to match the REGEX, IN, >= etc
# extensions to the matcher introduced in #3173.
class _FuzzyPredicate:
operators = ("FUZZY", "FUZZY1", "FUZZY2", "FUZZY3", "FUZZY4", "FUZZY5",
"FUZZY6", "FUZZY7", "FUZZY8", "FUZZY9")
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.value = value
self.predicate = predicate
self.is_extension = is_extension
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
fuzz = self.predicate[len("FUZZY"):] # number after prefix
self.fuzzy = int(fuzz) if fuzz else -1
self.fuzzy_compare = fuzzy_compare
self.key = _predicate_cache_key(self.attr, self.predicate, value, fuzzy=self.fuzzy)
def __call__(self, Token token):
if self.is_extension:
value = token._.get(self.attr)
else:
value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)]
if self.value == value:
return True
return self.fuzzy_compare(value, self.value, self.fuzzy)
class _RegexPredicate:
operators = ("REGEX",)
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.value = re.compile(value)
self.predicate = predicate
self.is_extension = is_extension
self.key = _predicate_cache_key(self.attr, self.predicate, value)
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
def __call__(self, Token token):
if self.is_extension:
value = token._.get(self.attr)
else:
value = token.vocab.strings[get_token_attr_for_matcher(token.c, self.attr)]
return bool(self.value.search(value))
class _SetPredicate:
operators = ("IN", "NOT_IN", "IS_SUBSET", "IS_SUPERSET", "INTERSECTS")
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.vocab = vocab
self.regex = regex
self.fuzzy = fuzzy
self.fuzzy_compare = fuzzy_compare
if self.attr == MORPH:
# normalize morph strings
self.value = set(self.vocab.morphology.add(v) for v in value)
else:
if self.regex:
self.value = set(re.compile(v) for v in value)
elif self.fuzzy is not None:
# add to string store
self.value = set(self.vocab.strings.add(v) for v in value)
else:
self.value = set(get_string_id(v) for v in value)
self.predicate = predicate
self.is_extension = is_extension
self.key = _predicate_cache_key(self.attr, self.predicate, value, regex=self.regex, fuzzy=self.fuzzy)
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
def __call__(self, Token token):
if self.is_extension:
value = token._.get(self.attr)
else:
value = get_token_attr_for_matcher(token.c, self.attr)
if self.predicate in ("IN", "NOT_IN"):
if isinstance(value, (str, int)):
value = get_string_id(value)
else:
return False
elif self.predicate in ("IS_SUBSET", "IS_SUPERSET", "INTERSECTS"):
# ensure that all values are enclosed in a set
if self.attr == MORPH:
# break up MORPH into individual Feat=Val values
value = set(get_string_id(v) for v in MorphAnalysis.from_id(self.vocab, value))
elif isinstance(value, (str, int)):
value = set((get_string_id(value),))
elif isinstance(value, Iterable) and all(isinstance(v, (str, int)) for v in value):
value = set(get_string_id(v) for v in value)
else:
return False
if self.predicate == "IN":
if self.regex:
value = self.vocab.strings[value]
return any(bool(v.search(value)) for v in self.value)
elif self.fuzzy is not None:
value = self.vocab.strings[value]
return any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy)
for v in self.value)
elif value in self.value:
return True
else:
return False
elif self.predicate == "NOT_IN":
if self.regex:
value = self.vocab.strings[value]
return not any(bool(v.search(value)) for v in self.value)
elif self.fuzzy is not None:
value = self.vocab.strings[value]
return not any(self.fuzzy_compare(value, self.vocab.strings[v], self.fuzzy)
for v in self.value)
elif value in self.value:
return False
else:
return True
elif self.predicate == "IS_SUBSET":
return value <= self.value
elif self.predicate == "IS_SUPERSET":
return value >= self.value
elif self.predicate == "INTERSECTS":
return bool(value & self.value)
def __repr__(self):
return repr(("SetPredicate", self.i, self.attr, self.value, self.predicate))
class _ComparisonPredicate:
operators = ("==", "!=", ">=", "<=", ">", "<")
def __init__(self, i, attr, value, predicate, is_extension=False, vocab=None,
regex=False, fuzzy=None, fuzzy_compare=None):
self.i = i
self.attr = attr
self.value = value
self.predicate = predicate
self.is_extension = is_extension
self.key = _predicate_cache_key(self.attr, self.predicate, value)
if self.predicate not in self.operators:
raise ValueError(Errors.E126.format(good=self.operators, bad=self.predicate))
def __call__(self, Token token):
if self.is_extension:
value = token._.get(self.attr)
else:
value = get_token_attr_for_matcher(token.c, self.attr)
if self.predicate == "==":
return value == self.value
if self.predicate == "!=":
return value != self.value
elif self.predicate == ">=":
return value >= self.value
elif self.predicate == "<=":
return value <= self.value
elif self.predicate == ">":
return value > self.value
elif self.predicate == "<":
return value < self.value
def _get_extra_predicates(spec, extra_predicates, vocab, fuzzy_compare):
predicate_types = {
"REGEX": _RegexPredicate,
"IN": _SetPredicate,
"NOT_IN": _SetPredicate,
"IS_SUBSET": _SetPredicate,
"IS_SUPERSET": _SetPredicate,
"INTERSECTS": _SetPredicate,
"==": _ComparisonPredicate,
"!=": _ComparisonPredicate,
">=": _ComparisonPredicate,
"<=": _ComparisonPredicate,
">": _ComparisonPredicate,
"<": _ComparisonPredicate,
"FUZZY": _FuzzyPredicate,
"FUZZY1": _FuzzyPredicate,
"FUZZY2": _FuzzyPredicate,
"FUZZY3": _FuzzyPredicate,
"FUZZY4": _FuzzyPredicate,
"FUZZY5": _FuzzyPredicate,
"FUZZY6": _FuzzyPredicate,
"FUZZY7": _FuzzyPredicate,
"FUZZY8": _FuzzyPredicate,
"FUZZY9": _FuzzyPredicate,
}
seen_predicates = {pred.key: pred.i for pred in extra_predicates}
output = []
for attr, value in spec.items():
if isinstance(attr, str):
if attr == "_":
output.extend(
_get_extension_extra_predicates(
value, extra_predicates, predicate_types,
seen_predicates))
continue
elif attr.upper() == "OP":
continue
if attr.upper() == "TEXT":
attr = "ORTH"
attr = IDS.get(attr.upper())
if isinstance(value, dict):
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
extra_predicates, seen_predicates, fuzzy_compare=fuzzy_compare))
return output
def _get_extra_predicates_dict(attr, value_dict, vocab, predicate_types,
extra_predicates, seen_predicates, regex=False, fuzzy=None, fuzzy_compare=None):
output = []
for type_, value in value_dict.items():
type_ = type_.upper()
cls = predicate_types.get(type_)
if cls is None:
warnings.warn(Warnings.W035.format(pattern=value_dict))
# ignore unrecognized predicate type
continue
elif cls == _RegexPredicate:
if isinstance(value, dict):
# add predicates inside regex operator
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
extra_predicates, seen_predicates,
regex=True))
continue
elif cls == _FuzzyPredicate:
if isinstance(value, dict):
# add predicates inside fuzzy operator
fuzz = type_[len("FUZZY"):] # number after prefix
fuzzy_val = int(fuzz) if fuzz else -1
output.extend(_get_extra_predicates_dict(attr, value, vocab, predicate_types,
extra_predicates, seen_predicates,
fuzzy=fuzzy_val, fuzzy_compare=fuzzy_compare))
continue
predicate = cls(len(extra_predicates), attr, value, type_, vocab=vocab,
regex=regex, fuzzy=fuzzy, fuzzy_compare=fuzzy_compare)
# Don't create redundant predicates.
# This helps with efficiency, as we're caching the results.
if predicate.key in seen_predicates:
output.append(seen_predicates[predicate.key])
else:
extra_predicates.append(predicate)
output.append(predicate.i)
seen_predicates[predicate.key] = predicate.i
return output
def _get_extension_extra_predicates(
spec, extra_predicates, predicate_types, seen_predicates
):
output = []
for attr, value in spec.items():
if isinstance(value, dict):
for type_, cls in predicate_types.items():
if type_ in value:
key = _predicate_cache_key(attr, type_, value[type_])
if key in seen_predicates:
output.append(seen_predicates[key])
else:
predicate = cls(len(extra_predicates), attr, value[type_], type_,
is_extension=True)
extra_predicates.append(predicate)
output.append(predicate.i)
seen_predicates[key] = predicate.i
return output
def _get_operators(spec):
# Support 'syntactic sugar' operator '+', as combination of ONE, ZERO_PLUS
lookup = {"*": (ZERO_PLUS,), "+": (ONE, ZERO_PLUS),
"?": (ZERO_ONE,), "1": (ONE,), "!": (ZERO,)}
# Fix casing
spec = {key.upper(): values for key, values in spec.items()
if isinstance(key, str)}
if "OP" not in spec:
return (ONE,)
elif spec["OP"] in lookup:
return lookup[spec["OP"]]
# Min_max {n,m}
elif spec["OP"].startswith("{") and spec["OP"].endswith("}"):
# {n} --> {n,n} exactly n ONE,(n)
# {n,m}--> {n,m} min of n, max of m ONE,(n),ZERO_ONE,(m)
# {,m} --> {0,m} min of zero, max of m ZERO_ONE,(m)
# {n,} --> {n,∞} min of n, max of inf ONE,(n),ZERO_PLUS
min_max = spec["OP"][1:-1]
min_max = min_max if "," in min_max else f"{min_max},{min_max}"
n, m = min_max.split(",")
# 1. Either n or m is a blank string and the other is numeric -->isdigit
# 2. Both are numeric and n <= m
if (not n.isdecimal() and not m.isdecimal()) or (n.isdecimal() and m.isdecimal() and int(n) > int(m)):
keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m "
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
# if n is empty string, zero would be used
head = tuple(ONE for __ in range(int(n or 0)))
tail = tuple(ZERO_ONE for __ in range(int(m) - int(n or 0))) if m else (ZERO_PLUS,)
return head + tail
else:
keys = ", ".join(lookup.keys()) + ", {n}, {n,m}, {n,}, {,m} where n and m are integers and n <= m "
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
def _get_extensions(spec, string_store, name2index):
attr_values = []
if not isinstance(spec.get("_", {}), dict):
raise ValueError(Errors.E154.format())
for name, value in spec.get("_", {}).items():
if isinstance(value, dict):
# Handle predicates (e.g. "IN", in the extra_predicates, not here.
continue
if isinstance(value, str):
value = string_store.add(value)
if name not in name2index:
name2index[name] = len(name2index)
attr_values.append((name2index[name], value))
return attr_values