mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import print_function, unicode_literals, division
 | |
| import io
 | |
| import bz2
 | |
| import logging
 | |
| from toolz import partition
 | |
| from os import path
 | |
| import re
 | |
| 
 | |
| import spacy.en
 | |
| from spacy.tokens import Doc
 | |
| 
 | |
| from joblib import Parallel, delayed
 | |
| import plac
 | |
| import ujson
 | |
| 
 | |
| 
 | |
| def parallelize(func, iterator, n_jobs, extra, backend='multiprocessing'):
 | |
|     extra = tuple(extra)
 | |
|     return Parallel(n_jobs=n_jobs, backend=backend)(delayed(func)(*(item + extra))
 | |
|                     for item in iterator)
 | |
| 
 | |
| 
 | |
| def iter_comments(loc):
 | |
|     with bz2.BZ2File(loc) as file_:
 | |
|         for i, line in enumerate(file_):
 | |
|             yield ujson.loads(line)['body']
 | |
| 
 | |
| 
 | |
| pre_format_re = re.compile(r'^[\`\*\~]')
 | |
| post_format_re = re.compile(r'[\`\*\~]$')
 | |
| url_re = re.compile(r'\[([^]]+)\]\(%%URL\)')
 | |
| link_re = re.compile(r'\[([^]]+)\]\(https?://[^\)]+\)')
 | |
| def strip_meta(text):
 | |
|     text = link_re.sub(r'\1', text)
 | |
|     text = text.replace('>', '>').replace('<', '<')
 | |
|     text = pre_format_re.sub('', text)
 | |
|     text = post_format_re.sub('', text)
 | |
|     return text.strip()
 | |
| 
 | |
| 
 | |
| def save_parses(batch_id, input_, out_dir, n_threads, batch_size):
 | |
|     out_loc = path.join(out_dir, '%d.bin' % batch_id)
 | |
|     if path.exists(out_loc):
 | |
|         return None
 | |
|     print('Batch', batch_id)
 | |
|     nlp = spacy.en.English()
 | |
|     nlp.matcher = None
 | |
|     with open(out_loc, 'wb') as file_:
 | |
|         texts = (strip_meta(text) for text in input_)
 | |
|         texts = (text for text in texts if text.strip())
 | |
|         for doc in nlp.pipe(texts, batch_size=batch_size, n_threads=n_threads):
 | |
|             file_.write(doc.to_bytes())
 | |
| 
 | |
| @plac.annotations(
 | |
|     in_loc=("Location of input file"),
 | |
|     out_dir=("Location of input file"),
 | |
|     n_process=("Number of processes", "option", "p", int),
 | |
|     n_thread=("Number of threads per process", "option", "t", int),
 | |
|     batch_size=("Number of texts to accumulate in a buffer", "option", "b", int)
 | |
| )
 | |
| def main(in_loc, out_dir, n_process=1, n_thread=4, batch_size=100):
 | |
|     if not path.exists(out_dir):
 | |
|         path.join(out_dir)
 | |
|     if n_process >= 2:
 | |
|         texts = partition(200000, iter_comments(in_loc))
 | |
|         parallelize(save_parses, enumerate(texts), n_process, [out_dir, n_thread, batch_size],
 | |
|                    backend='multiprocessing')
 | |
|     else:
 | |
|         save_parses(0, iter_comments(in_loc), out_dir, n_thread, batch_size)
 | |
| 
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     plac.call(main)
 |