mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			363 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > USAGE > SPACY 101 > LIGHTNING TOUR
 | ||
| 
 | ||
| p
 | ||
|     |  The following examples and code snippets give you an overview of spaCy's
 | ||
|     |  functionality and its usage.
 | ||
| 
 | ||
| +h(3, "lightning-tour-models") Install models and process text
 | ||
| 
 | ||
| +code(false, "bash").
 | ||
|     python -m spacy download en_core_web_sm
 | ||
|     python -m spacy download de_core_news_sm
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u'Hello, world. Here are two sentences.')
 | ||
|     print([t.text for t in doc])
 | ||
| 
 | ||
|     nlp_de = spacy.load('de_core_news_sm')
 | ||
|     doc_de = nlp_de(u'Ich bin ein Berliner.')
 | ||
|     print([t.text for t in doc_de])
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("spacy#load") #[code spacy.load()]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/models") Models],
 | ||
|     |  #[+a("/usage/spacy-101") spaCy 101]
 | ||
| 
 | ||
| +h(3, "lightning-tour-tokens-sentences") Get tokens, noun chunks & sentences
 | ||
|     +tag-model("dependency parse")
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u"Peach emoji is where it has always been. Peach is the superior "
 | ||
|               u"emoji. It's outranking eggplant 🍑 ")
 | ||
|     print(doc[0].text)          # Peach
 | ||
|     print(doc[1].text)          # emoji
 | ||
|     print(doc[-1].text)         # 🍑
 | ||
|     print(doc[17:19].text)      # outranking eggplant
 | ||
| 
 | ||
|     noun_chunks = list(doc.noun_chunks)
 | ||
|     print(noun_chunks[0].text)  # Peach emoji
 | ||
| 
 | ||
|     sentences = list(doc.sents)
 | ||
|     assert len(sentences) == 3
 | ||
|     print(sentences[1].text)    # 'Peach is the superior emoji.'
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("doc") #[code Doc]], #[+api("token") #[code Token]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/spacy-101") spaCy 101]
 | ||
| 
 | ||
| +h(3, "lightning-tour-pos-tags") Get part-of-speech tags and flags
 | ||
|     +tag-model("tagger")
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion')
 | ||
|     apple = doc[0]
 | ||
|     print('Fine-grained POS tag', apple.pos_, apple.pos)
 | ||
|     print('Coarse-grained POS tag', apple.tag_, apple.tag)
 | ||
|     print('Word shape', apple.shape_, apple.shape)
 | ||
|     print('Alphanumeric characters?', apple.is_alpha)
 | ||
|     print('Punctuation mark?', apple.is_punct)
 | ||
| 
 | ||
|     billion = doc[10]
 | ||
|     print('Digit?', billion.is_digit)
 | ||
|     print('Like a number?', billion.like_num)
 | ||
|     print('Like an email address?', billion.like_email)
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("token") #[code Token]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/linguistic-features#pos-tagging") Part-of-speech tagging]
 | ||
| 
 | ||
| +h(3, "lightning-tour-hashes") Use hash values for any string
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u'I love coffee')
 | ||
| 
 | ||
|     coffee_hash = nlp.vocab.strings[u'coffee']  # 3197928453018144401
 | ||
|     coffee_text = nlp.vocab.strings[coffee_hash]  # 'coffee'
 | ||
|     print(coffee_hash, coffee_text)
 | ||
|     print(doc[2].orth, coffee_hash)  # 3197928453018144401
 | ||
|     print(doc[2].text, coffee_text)  # 'coffee'
 | ||
| 
 | ||
|     beer_hash = doc.vocab.strings.add(u'beer')  # 3073001599257881079
 | ||
|     beer_text = doc.vocab.strings[beer_hash]  # 'beer'
 | ||
|     print(beer_hash, beer_text)
 | ||
| 
 | ||
|     unicorn_hash = doc.vocab.strings.add(u'🦄 ')  # 18234233413267120783
 | ||
|     unicorn_text = doc.vocab.strings[unicorn_hash]  # '🦄 '
 | ||
|     print(unicorn_hash, unicorn_text)
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("stringstore") #[code StringStore]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/spacy-101#vocab") Vocab, hashes and lexemes 101]
 | ||
| 
 | ||
| +h(3, "lightning-tour-entities") Recognise and update named entities
 | ||
|     +tag-model("NER")
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u'San Francisco considers banning sidewalk delivery robots')
 | ||
|     for ent in doc.ents:
 | ||
|         print(ent.text, ent.start_char, ent.end_char, ent.label_)
 | ||
| 
 | ||
|     from spacy.tokens import Span
 | ||
|     doc = nlp(u'FB is hiring a new VP of global policy')
 | ||
|     doc.ents = [Span(doc, 0, 1, label=doc.vocab.strings[u'ORG'])]
 | ||
|     for ent in doc.ents:
 | ||
|         print(ent.text, ent.start_char, ent.end_char, ent.label_)
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/linguistic-features#named-entities") Named entity recognition]
 | ||
| 
 | ||
| +h(3, "lightning-tour-training") Train and update neural network models
 | ||
|     +tag-model
 | ||
| 
 | ||
| +code.
 | ||
|     import spacy
 | ||
|     import random
 | ||
| 
 | ||
|     nlp = spacy.load('en')
 | ||
|     train_data = [("Uber blew through $1 million", {'entities': [(0, 4, 'ORG')]})]
 | ||
| 
 | ||
|     with nlp.disable_pipes(*[pipe for pipe in nlp.pipe_names if pipe != 'ner']):
 | ||
|         optimizer = nlp.begin_training()
 | ||
|         for i in range(10):
 | ||
|             random.shuffle(train_data)
 | ||
|             for text, annotations in train_data:
 | ||
|                 nlp.update([text], [annotations], sgd=optimizer)
 | ||
|     nlp.to_disk('/model')
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("language#update") #[code Language.update]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/training") Training spaCy's statistical models]
 | ||
| 
 | ||
| +h(3, "lightning-tour-displacy") Visualize a dependency parse and named entities in your browser
 | ||
|     +tag-model("dependency parse", "NER")
 | ||
|     +tag-new(2)
 | ||
| 
 | ||
| +aside
 | ||
|     .u-text-center(style="overflow: auto").
 | ||
|         <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" class="o-svg" viewBox="270 35 125 240" width="400" height="150" style="max-width: none; color: #fff; background: #1a1e23; font-family: inherit; font-size: 2rem">
 | ||
|             <text fill="currentColor" text-anchor="middle" y="222.0">
 | ||
|                 <tspan style="font-weight: bold" fill="currentColor" x="50">This</tspan>
 | ||
|                 <tspan dy="2em" class="u-color-theme" style="font-weight: bold" fill="currentColor" x="50">DT</tspan>
 | ||
|             </text>
 | ||
|             <text fill="currentColor" text-anchor="middle" y="222.0">
 | ||
|                 <tspan style="font-weight: bold" fill="currentColor" x="225">is</tspan>
 | ||
|                 <tspan dy="2em" class="u-color-theme" style="font-weight: bold" fill="currentColor" x="225">VBZ</tspan>
 | ||
|             </text>
 | ||
|             <text fill="currentColor" text-anchor="middle" y="222.0">
 | ||
|                 <tspan style="font-weight: bold" fill="currentColor" x="400">a</tspan>
 | ||
|                 <tspan dy="2em" class="u-color-theme" style="font-weight: bold" fill="currentColor" x="400">DT</tspan>
 | ||
|             </text>
 | ||
|             <text fill="currentColor" text-anchor="middle" y="222.0">
 | ||
|                 <tspan style="font-weight: bold" fill="currentColor" x="575">sentence.</tspan>
 | ||
|                 <tspan dy="2em" class="u-color-theme" style="font-weight: bold" fill="currentColor" x="575">NN</tspan>
 | ||
|             </text>
 | ||
|             <path id="arrow-0-0" stroke-width="2px" d="M70,177.0 C70,89.5 220.0,89.5 220.0,177.0" fill="none" stroke="currentColor"/>
 | ||
|             <text dy="1.25em" style="font-size: 0.9em; letter-spacing: 2px">
 | ||
|                 <textPath xlink:href="#arrow-0-0" startOffset="50%" fill="currentColor" text-anchor="middle">nsubj</textPath>
 | ||
|             </text>
 | ||
|             <path d="M70,179.0 L62,167.0 78,167.0" fill="currentColor"/>
 | ||
|             <path id="arrow-0-1" stroke-width="2px" d="M420,177.0 C420,89.5 570.0,89.5 570.0,177.0" fill="none" stroke="currentColor"/>
 | ||
|             <text dy="1.25em" style="font-size: 0.9em; letter-spacing: 2px">
 | ||
|                 <textPath xlink:href="#arrow-0-1" startOffset="50%" fill="currentColor" text-anchor="middle">det</textPath>
 | ||
|             </text>
 | ||
|             <path d="M420,179.0 L412,167.0 428,167.0" fill="currentColor"/>
 | ||
|             <path id="arrow-0-2" stroke-width="2px" d="M245,177.0 C245,2.0 575.0,2.0 575.0,177.0" fill="none" stroke="currentColor"/>
 | ||
|             <text dy="1.25em" style="font-size: 0.9em; letter-spacing: 2px">
 | ||
|                 <textPath xlink:href="#arrow-0-2" startOffset="50%" fill="currentColor" text-anchor="middle">attr</textPath>
 | ||
|             </text>
 | ||
|             <path d="M575.0,179.0 L583.0,167.0 567.0,167.0" fill="currentColor"/>
 | ||
|         </svg>
 | ||
| 
 | ||
| +code.
 | ||
|     from spacy import displacy
 | ||
| 
 | ||
|     doc_dep = nlp(u'This is a sentence.')
 | ||
|     displacy.serve(doc_dep, style='dep')
 | ||
| 
 | ||
|     doc_ent = nlp(u'When Sebastian Thrun started working on self-driving cars at Google '
 | ||
|                   u'in 2007, few people outside of the company took him seriously.')
 | ||
|     displacy.serve(doc_ent, style='ent')
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("top-level#displacy") #[code displacy]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/visualizers") Visualizers]
 | ||
| 
 | ||
| +h(3, "lightning-tour-word-vectors") Get word vectors and similarity
 | ||
|     +tag-model("word vectors")
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_md')
 | ||
|     doc = nlp(u"Apple and banana are similar. Pasta and hippo aren't.")
 | ||
| 
 | ||
|     apple = doc[0]
 | ||
|     banana = doc[2]
 | ||
|     pasta = doc[6]
 | ||
|     hippo = doc[8]
 | ||
| 
 | ||
|     print('apple <-> banana', apple.similarity(banana))
 | ||
|     print('pasta <-> hippo', pasta.similarity(hippo))
 | ||
|     print(apple.has_vector, banana.has_vector, pasta.has_vector, hippo.has_vector)
 | ||
| 
 | ||
| p
 | ||
|     |  For the best results, you should run this example using the
 | ||
|     |  #[+a("/models/en#en_vectors_web_lg") #[code en_vectors_web_lg]] model
 | ||
|     |  (currently not available in the live demo).
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/vectors-similarity") Word vectors and similarity]
 | ||
| 
 | ||
| +h(3, "lightning-tour-serialization") Simple and efficient serialization
 | ||
| 
 | ||
| +code.
 | ||
|     import spacy
 | ||
|     from spacy.tokens import Doc
 | ||
|     from spacy.vocab import Vocab
 | ||
| 
 | ||
|     nlp = spacy.load('en')
 | ||
|     customer_feedback = open('customer_feedback_627.txt').read()
 | ||
|     doc = nlp(customer_feedback)
 | ||
|     doc.to_disk('/tmp/customer_feedback_627.bin')
 | ||
| 
 | ||
|     new_doc = Doc(Vocab()).from_disk('/tmp/customer_feedback_627.bin')
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("language") #[code Language]],
 | ||
|     |  #[+api("doc") #[code Doc]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/models#saving-loading") Saving and loading models]
 | ||
| 
 | ||
| +h(3, "lightning-tour-rule-matcher") Match text with token rules
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
|     from spacy.matcher import Matcher
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     matcher = Matcher(nlp.vocab)
 | ||
| 
 | ||
|     def set_sentiment(matcher, doc, i, matches):
 | ||
|         doc.sentiment += 0.1
 | ||
| 
 | ||
|     pattern1 = [{'ORTH': 'Google'}, {'ORTH': 'I'}, {'ORTH': '/'}, {'ORTH': 'O'}]
 | ||
|     pattern2 = [[{'ORTH': emoji, 'OP': '+'}] for emoji in ['😀', '😂', '🤣', '😍']]
 | ||
|     matcher.add('GoogleIO', None, pattern1) # match "Google I/O" or "Google i/o"
 | ||
|     matcher.add('HAPPY', set_sentiment, *pattern2) # match one or more happy emoji
 | ||
| 
 | ||
|     doc = nlp(u"A text about Google I/O 😀😀")
 | ||
|     matches = matcher(doc)
 | ||
| 
 | ||
|     for match_id, start, end in matches:
 | ||
|        string_id = nlp.vocab.strings[match_id]
 | ||
|        span = doc[start:end]
 | ||
|        print(string_id, span.text)
 | ||
|     print('Sentiment', doc.sentiment)
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("matcher") #[code Matcher]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/linguistic-features#rule-based-matching") Rule-based matching]
 | ||
| 
 | ||
| +h(3, "lightning-tour-multi-threaded") Multi-threaded generator
 | ||
| 
 | ||
| +code.
 | ||
|     texts = [u'One document.', u'...', u'Lots of documents']
 | ||
|     # .pipe streams input, and produces streaming output
 | ||
|     iter_texts = (texts[i % 3] for i in xrange(100000000))
 | ||
|     for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=4)):
 | ||
|         assert doc.is_parsed
 | ||
|         if i == 100:
 | ||
|             break
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("doc") #[code Doc]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/processing-pipelines#multithreading") Processing pipelines]
 | ||
| 
 | ||
| +h(3, "lightning-tour-dependencies") Get syntactic dependencies
 | ||
|     +tag-model("dependency parse")
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u"When Sebastian Thrun started working on self-driving cars at Google "
 | ||
|               u"in 2007, few people outside of the company took him seriously.")
 | ||
| 
 | ||
|     dep_labels = []
 | ||
|     for token in doc:
 | ||
|         while token.head != token:
 | ||
|             dep_labels.append(token.dep_)
 | ||
|             token = token.head
 | ||
|     print(dep_labels)
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("token") #[code Token]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/linguistic-features#dependency-parse") Using the dependency parse]
 | ||
| 
 | ||
| +h(3, "lightning-tour-numpy-arrays") Export to numpy arrays
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
|     from spacy.attrs import ORTH, LIKE_URL
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u"Check out https://spacy.io")
 | ||
|     for token in doc:
 | ||
|         print(token.text, token.orth, token.like_url)
 | ||
| 
 | ||
|     attr_ids = [ORTH, LIKE_URL]
 | ||
|     doc_array = doc.to_array(attr_ids)
 | ||
|     print(doc_array.shape)
 | ||
|     print(len(doc), len(attr_ids))
 | ||
| 
 | ||
|     assert doc[0].orth == doc_array[0, 0]
 | ||
|     assert doc[1].orth == doc_array[1, 0]
 | ||
|     assert doc[0].like_url == doc_array[0, 1]
 | ||
| 
 | ||
|     assert list(doc_array[:, 1]) == [t.like_url for t in doc]
 | ||
|     print(list(doc_array[:, 1]))
 | ||
| 
 | ||
| +h(3, "lightning-tour-inline") Calculate inline markup on original string
 | ||
| 
 | ||
| +code-exec.
 | ||
|     import spacy
 | ||
| 
 | ||
|     def put_spans_around_tokens(doc):
 | ||
|         """Here, we're building a custom "syntax highlighter" for
 | ||
|         part-of-speech tags and dependencies. We put each token in a
 | ||
|         span element, with the appropriate classes computed. All whitespace is
 | ||
|         preserved, outside of the spans. (Of course, HTML will only display
 | ||
|         multiple whitespace if enabled – but the point is, no information is lost
 | ||
|         and you can calculate what you need, e.g. <br />, <p> etc.)
 | ||
|         """
 | ||
|         output = []
 | ||
|         html = '<span class="{classes}">{word}</span>{space}'
 | ||
|         for token in doc:
 | ||
|             if token.is_space:
 | ||
|                 output.append(token.text)
 | ||
|             else:
 | ||
|                 classes = 'pos-{} dep-{}'.format(token.pos_, token.dep_)
 | ||
|                 output.append(html.format(classes=classes, word=token.text, space=token.whitespace_))
 | ||
|         string = ''.join(output)
 | ||
|         string = string.replace('\n', '')
 | ||
|         string = string.replace('\t', '    ')
 | ||
|         return '<pre>{}</pre>'.format(string)
 | ||
| 
 | ||
|     nlp = spacy.load('en_core_web_sm')
 | ||
|     doc = nlp(u"This is a test.\n\nHello   world.")
 | ||
|     html = put_spans_around_tokens(doc)
 | ||
|     print(html)
 |