spaCy/spacy/pipeline/spancat_exclusive.py
2022-08-24 16:47:56 +08:00

455 lines
17 KiB
Python

from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, cast
import numpy
from thinc.api import Config, Model, Ops, Optimizer, Softmax_v2
from thinc.api import get_current_ops, set_dropout_rate
from thinc.types import Floats2d, Ints1d, Ints2d, Ragged
from ..compat import Protocol, runtime_checkable
from ..errors import Errors
from ..language import Language
from ..tokens import Doc, Span, SpanGroup
from ..training import Example, validate_examples
from ..util import registry
from ..vocab import Vocab
from .spancat import spancat_score
from .trainable_pipe import TrainablePipe
@registry.layers("spacy.Softmax.v1")
def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
"""An output layer for multi-label classification. It uses a linear layer
followed by a logistic activation.
"""
return Softmax_v2(nI=nI, nO=nO)
spancat_exclusive_default_config = """
[model]
@architectures = "spacy.SpanCategorizerExclusive.v1"
scorer = {"@layers": "spacy.Softmax.v1"}
[model.reducer]
@layers = spacy.mean_max_reducer.v1
hidden_size = 128
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v1"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 96
rows = [5000, 2000, 1000, 1000]
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_exclusive_default_config)["model"]
@runtime_checkable
class Suggester(Protocol):
def __call__(self, docs: Iterable[Doc], *, ops: Optional[Ops] = None) -> Ragged:
...
@Language.factory(
"spancat_exclusive",
assigns=["doc.spans"],
default_config={
"spans_key": "sc",
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat(
nlp: Language,
name: str,
suggester: Suggester,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
spans_key: str,
scorer: Optional[Callable],
negative_weight: Optional[float] = 1.0,
allow_overlap: Optional[bool] = True,
) -> "SpanCategorizerExclusive":
"""Create a SpanCategorizer component. The span categorizer consists of two
parts: a suggester function that proposes candidate spans, and a labeller
model that predicts one or more labels for each span.
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
Spans are returned as a ragged array with two integer columns, for the
start and end positions.
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
is given a list of documents and (start, end) indices representing
candidate span offsets. The model predicts a probability for each category
for each span.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
negative_weight (optional[float]): Multiplier for the loss terms.
Can be used to down weigh the negative samples if there are too many.
allow_overlap (Optional[bool]): If True the data is assumed to
contain overlapping spans.
"""
return SpanCategorizerExclusive(
nlp.vocab,
suggester=suggester,
model=model,
spans_key=spans_key,
negative_weight=negative_weight,
name=name,
scorer=scorer,
allow_overlap=allow_overlap,
)
@dataclass
class Ranges:
"""
Helper class help avoid storing overlapping span.
"""
def __init__(self):
self.ranges = set()
def add(self, i, j):
for e in range(i, j):
self.ranges.add(e)
def __contains__(self, rang):
i, j = rang
for e in range(i, j):
if e in self.ranges:
return True
return False
class SpanCategorizerExclusive(TrainablePipe):
"""Pipeline component to label spans of text.
DOCS: https://spacy.io/api/spancategorizer
"""
def __init__(
self,
vocab: Vocab,
model: Model[Tuple[List[Doc], Ragged], Floats2d],
suggester: Suggester,
name: str = "spancat_exclusive",
*,
spans_key: str = "spans",
negative_weight: Optional[float],
scorer: Optional[Callable] = spancat_score,
allow_overlap: Optional[bool] = True,
) -> None:
"""Initialize the span categorizer.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
spans_key (str): Key of the Doc.spans dict to save the spans under.
During initialization and training, the component will look for
spans on the reference document under the same key. Defaults to
`"spans"`.
negative_weight (optional[float]): Multiplier for the loss terms.
Can be used to down weigh the negative samples if there are too many.
scorer (Optional[Callable]): The scoring method. Defaults to
allow_overlap (Optional[bool]): If True the data is assumed to
contains overlapping spans.
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
DOCS: https://spacy.io/api/spancategorizer#init
"""
self.cfg = {
"labels": [],
"spans_key": spans_key,
"negative_weight": negative_weight,
"allow_overlap": allow_overlap,
}
self.vocab = vocab
self.suggester = suggester
self.model = model
self.name = name
self.scorer = scorer
@property
def key(self) -> str:
"""Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
"""
return str(self.cfg["spans_key"])
def add_label(self, label: str) -> int:
"""Add a new label to the pipe.
label (str): The label to add.
RETURNS (int): 0 if label is already present, otherwise 1.
DOCS: https://spacy.io/api/spancategorizer#add_label
"""
if not isinstance(label, str):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
self._allow_extra_label()
self.cfg["labels"].append(label) # type: ignore
self.vocab.strings.add(label)
return 1
@property
def labels(self) -> Tuple[str]:
"""RETURNS (Tuple[str]): The labels currently added to the component.
DOCS: https://spacy.io/api/spancategorizer#labels
"""
return tuple(self.cfg["labels"]) # type: ignore
@property
def label_data(self) -> List[str]:
"""RETURNS (List[str]): Information about the component's labels.
DOCS: https://spacy.io/api/spancategorizer#label_data
"""
return list(self.labels)
@property
def _negative_label(self):
"""
Index of the negative label.
"""
return len(self.label_data)
@property
def _n_labels(self):
"""
Number of labels including the negative label.
"""
return len(self.label_data) + 1
def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/spancategorizer#predict
"""
indices = self.suggester(docs, ops=self.model.ops)
scores = self.model.predict((docs, indices)) # type: ignore
return indices, scores
def set_candidates(
self, docs: Iterable[Doc], *, candidates_key: str = "candidates"
) -> None:
"""Use the spancat suggester to add a list of span candidates to a
list of docs. Intended to be used for debugging purposes.
docs (Iterable[Doc]): The documents to modify.
candidates_key (str): Key of the Doc.spans dict to save the
candidate spans under.
DOCS: https://spacy.io/api/spancategorizer#set_candidates
"""
suggester_output = self.suggester(docs, ops=self.model.ops)
for candidates, doc in zip(suggester_output, docs): # type: ignore
doc.spans[candidates_key] = []
for index in candidates.dataXd:
doc.spans[candidates_key].append(doc[index[0] : index[1]])
def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by SpanCategorizer.predict.
DOCS: https://spacy.io/api/spancategorizer#set_annotations
"""
allow_overlap = self.cfg["allow_overlap"]
labels = self.labels
indices, scores = indices_scores
offset = 0
for i, doc in enumerate(docs):
indices_i = indices[i].dataXd
doc.spans[self.key] = self._make_span_group(
doc,
indices_i,
scores[offset : offset + indices.lengths[i]],
labels,
allow_overlap,
) # type: ignore[arg-type]
offset += indices.lengths[i]
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/spancategorizer#update
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "SpanCategorizer.update")
self._validate_categories(examples)
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
docs = [eg.predicted for eg in examples]
spans = self.suggester(docs, ops=self.model.ops)
if spans.lengths.sum() == 0:
return losses
set_dropout_rate(self.model, drop)
scores, backprop_scores = self.model.begin_update((docs, spans))
loss, d_scores = self.get_loss(examples, (spans, scores))
backprop_scores(d_scores) # type: ignore
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
return losses
def get_loss(
self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d]
) -> Tuple[float, float]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
spans_scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/spancategorizer#get_loss
"""
spans, scores = spans_scores
spans = Ragged(
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
)
label_map = {label: i for i, label in enumerate(self.labels)}
target = numpy.zeros(scores.shape, dtype=scores.dtype)
# Set negative class as target initially for all samples.
negative_spans = numpy.ones((scores.shape[0]))
offset = 0
for i, eg in enumerate(examples):
# Map (start, end) offset of spans to the row in the
# d_scores array, so that we can adjust the gradient
# for predictions that were in the gold standard.
spans_index = {}
spans_i = spans[i].dataXd
for j in range(spans.lengths[i]):
start = int(spans_i[j, 0]) # type: ignore
end = int(spans_i[j, 1]) # type: ignore
spans_index[(start, end)] = offset + j
for gold_span in self._get_aligned_spans(eg):
key = (gold_span.start, gold_span.end)
if key in spans_index:
row = spans_index[key]
k = label_map[gold_span.label_]
target[row, k] = 1.0
# delete negative label target.
negative_spans[row] = 0.0
# The target is a flat array for all docs. Track the position
# we're at within the flat array.
offset += spans.lengths[i]
target = self.model.ops.asarray(target, dtype="f") # type: ignore
negative_samples = numpy.nonzero(negative_spans)[0]
target[negative_samples, self._negative_label] = 1.0
d_scores = scores - target
neg_weight = self.cfg["negative_weight"]
if neg_weight != 1.0:
d_scores[negative_samples] *= neg_weight
loss = float((d_scores**2).sum())
return loss, d_scores
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
labels: Optional[List[str]] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Optional[Language]): The current nlp object the component is part of.
labels (Optional[List[str]]): The labels to add to the component, typically generated by the
`init labels` command. If no labels are provided, the get_examples
callback is used to extract the labels from the data.
DOCS: https://spacy.io/api/spancategorizer#initialize
"""
subbatch: List[Example] = []
if labels is not None:
for label in labels:
self.add_label(label)
for eg in get_examples():
if labels is None:
for span in eg.reference.spans.get(self.key, []):
self.add_label(span.label_)
if len(subbatch) < 10:
subbatch.append(eg)
self._require_labels()
if subbatch:
docs = [eg.x for eg in subbatch]
spans = build_ngram_suggester(sizes=[1])(docs)
# + 1 for the "no-label" category
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
self.model.initialize(X=(docs, spans), Y=Y)
# FIXME I think this branch is broken
else:
raise ValueError("Cannot initialize without examples.")
def _validate_categories(self, examples: Iterable[Example]):
# TODO
pass
def _get_aligned_spans(self, eg: Example):
return eg.get_aligned_spans_y2x(
eg.reference.spans.get(self.key, []), allow_overlap=True
)
def _make_span_group(
self,
doc: Doc,
indices: Ints2d,
scores: Floats2d,
labels: List[str],
allow_overlap: bool = True,
) -> SpanGroup:
scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices)
predicted = scores.argmax(axis=1)
# Remove samples where the negative label is the argmax
positive = numpy.where(predicted != self._negative_label)
predicted = predicted[positive[0]]
indices = indices[positive[0]]
# Sort spans according to argmax probability
if not allow_overlap:
argmax_probs = numpy.take_along_axis(
scores[positive[0]], numpy.expand_dims(predicted, 1), axis=1
)
argmax_probs = argmax_probs.squeeze()
sort_idx = (argmax_probs * -1).argsort()
predicted = predicted[sort_idx]
indices = indices[sort_idx]
seen = Ranges()
spans = SpanGroup(doc, name=self.key)
for i in range(len(predicted)):
label = predicted[i]
start = indices[i, 0]
end = indices[i, 1]
if not allow_overlap:
if (start, end) in seen:
continue
else:
seen.add(start, end)
spans.append(Span(doc, start, end, label=labels[label]))
return spans