mirror of
https://github.com/explosion/spaCy.git
synced 2025-11-02 00:47:52 +03:00
Docs in Examples are allowed to have arbitrarily different whitespace. Handling that properly would be nice but isn't required, but for now check for it and blow up.
338 lines
11 KiB
Python
338 lines
11 KiB
Python
from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
|
|
import warnings
|
|
|
|
from thinc.types import Floats2d, Floats3d, Ints2d
|
|
from thinc.api import Model, Config, Optimizer
|
|
from thinc.api import set_dropout_rate, to_categorical
|
|
from itertools import islice
|
|
from statistics import mean
|
|
|
|
from .trainable_pipe import TrainablePipe
|
|
from ..language import Language
|
|
from ..training import Example, validate_examples, validate_get_examples
|
|
from ..errors import Errors
|
|
from ..tokens import Doc
|
|
from ..vocab import Vocab
|
|
from ..util import registry
|
|
|
|
from ..ml.models.coref_util import (
|
|
create_gold_scores,
|
|
MentionClusters,
|
|
create_head_span_idxs,
|
|
get_clusters_from_doc,
|
|
get_predicted_clusters,
|
|
DEFAULT_CLUSTER_PREFIX,
|
|
)
|
|
|
|
from ..scorer import Scorer
|
|
|
|
|
|
default_config = """
|
|
[model]
|
|
@architectures = "spacy.Coref.v1"
|
|
tok2vec_size = 768
|
|
distance_embedding_size = 20
|
|
hidden_size = 1024
|
|
depth = 1
|
|
dropout = 0.3
|
|
antecedent_limit = 50
|
|
antecedent_batch_size = 512
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.Tok2Vec.v2"
|
|
|
|
[model.tok2vec.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = 64
|
|
rows = [2000, 2000, 1000, 1000, 1000, 1000]
|
|
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
|
|
include_static_vectors = false
|
|
|
|
[model.tok2vec.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
width = ${model.tok2vec.embed.width}
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
depth = 2
|
|
"""
|
|
DEFAULT_COREF_MODEL = Config().from_str(default_config)["model"]
|
|
|
|
|
|
def coref_scorer(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|
return Scorer.score_coref_clusters(examples, **kwargs)
|
|
|
|
|
|
@registry.scorers("spacy.coref_scorer.v1")
|
|
def make_coref_scorer():
|
|
return coref_scorer
|
|
|
|
|
|
@Language.factory(
|
|
"coref",
|
|
assigns=["doc.spans"],
|
|
requires=["doc.spans"],
|
|
default_config={
|
|
"model": DEFAULT_COREF_MODEL,
|
|
"span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
|
|
"scorer": {"@scorers": "spacy.coref_scorer.v1"},
|
|
},
|
|
default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None},
|
|
)
|
|
def make_coref(
|
|
nlp: Language,
|
|
name: str,
|
|
model,
|
|
scorer: Optional[Callable],
|
|
span_cluster_prefix: str,
|
|
) -> "CoreferenceResolver":
|
|
"""Create a CoreferenceResolver component."""
|
|
|
|
return CoreferenceResolver(
|
|
nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix, scorer=scorer
|
|
)
|
|
|
|
|
|
class CoreferenceResolver(TrainablePipe):
|
|
"""Pipeline component for coreference resolution.
|
|
|
|
DOCS: https://spacy.io/api/coref (TODO)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Vocab,
|
|
model: Model,
|
|
name: str = "coref",
|
|
*,
|
|
span_mentions: str = "coref_mentions",
|
|
span_cluster_prefix: str = DEFAULT_CLUSTER_PREFIX,
|
|
scorer: Optional[Callable] = coref_scorer,
|
|
) -> None:
|
|
"""Initialize a coreference resolution component.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
span_mentions (str): Key in doc.spans where the candidate coref mentions
|
|
are stored in.
|
|
span_cluster_prefix (str): Prefix for the key in doc.spans to store the
|
|
coref clusters in.
|
|
|
|
DOCS: https://spacy.io/api/coref#init (TODO)
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self.span_mentions = span_mentions
|
|
self.span_cluster_prefix = span_cluster_prefix
|
|
self._rehearsal_model = None
|
|
|
|
self.cfg: Dict[str, Any] = {"span_cluster_prefix": span_cluster_prefix}
|
|
self.scorer = scorer
|
|
|
|
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
|
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
|
|
docs (Iterable[Doc]): The documents to predict.
|
|
RETURNS: The models prediction for each document.
|
|
|
|
DOCS: https://spacy.io/api/coref#predict (TODO)
|
|
"""
|
|
out = []
|
|
for doc in docs:
|
|
scores, idxs = self.model.predict([doc])
|
|
# idxs is a list of mentions (start / end idxs)
|
|
# each item in scores includes scores and a mapping from scores to mentions
|
|
ant_idxs = idxs
|
|
|
|
# TODO batching
|
|
xp = self.model.ops.xp
|
|
|
|
starts = xp.arange(0, len(doc))
|
|
ends = xp.arange(0, len(doc)) + 1
|
|
|
|
predicted = get_predicted_clusters(xp, starts, ends, ant_idxs, scores)
|
|
out.append(predicted)
|
|
|
|
return out
|
|
|
|
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
|
|
"""Modify a batch of Doc objects, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
clusters: The span clusters, produced by CoreferenceResolver.predict.
|
|
|
|
DOCS: https://spacy.io/api/coref#set_annotations (TODO)
|
|
"""
|
|
docs = list(docs)
|
|
if len(docs) != len(clusters_by_doc):
|
|
raise ValueError(
|
|
"Found coref clusters incompatible with the "
|
|
"documents provided to the 'coref' component. "
|
|
"This is likely a bug in spaCy."
|
|
)
|
|
for doc, clusters in zip(docs, clusters_by_doc):
|
|
for ii, cluster in enumerate(clusters):
|
|
key = self.span_cluster_prefix + "_" + str(ii)
|
|
if key in doc.spans:
|
|
raise ValueError(
|
|
"Found coref clusters incompatible with the "
|
|
"documents provided to the 'coref' component. "
|
|
"This is likely a bug in spaCy."
|
|
)
|
|
|
|
doc.spans[key] = []
|
|
for mention in cluster:
|
|
doc.spans[key].append(doc[mention[0] : mention[1]])
|
|
|
|
def update(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model. Delegates to predict and get_loss.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/coref#update (TODO)
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "CoreferenceResolver.update")
|
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
total_loss = 0
|
|
|
|
for eg in examples:
|
|
if eg.x.text != eg.y.text:
|
|
# TODO assign error number
|
|
raise ValueError(
|
|
"""Text, including whitespace, must match between reference and
|
|
predicted docs in coref training.
|
|
"""
|
|
)
|
|
# TODO check this causes no issues (in practice it runs)
|
|
preds, backprop = self.model.begin_update([eg.predicted])
|
|
score_matrix, mention_idx = preds
|
|
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
|
|
total_loss += loss
|
|
# TODO check shape here
|
|
backprop((d_scores, mention_idx))
|
|
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += total_loss
|
|
return losses
|
|
|
|
def rehearse(self, examples, *, sgd=None, losses=None, **config):
|
|
raise NotImplementedError
|
|
|
|
def add_label(self, label: str) -> int:
|
|
"""Technically this method should be implemented from TrainablePipe,
|
|
but it is not relevant for the coref component.
|
|
"""
|
|
raise NotImplementedError(
|
|
Errors.E931.format(
|
|
parent="CoreferenceResolver", method="add_label", name=self.name
|
|
)
|
|
)
|
|
|
|
def get_loss(
|
|
self,
|
|
examples: Iterable[Example],
|
|
score_matrix: Floats2d,
|
|
mention_idx: Ints2d,
|
|
):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/coref#get_loss (TODO)
|
|
"""
|
|
ops = self.model.ops
|
|
xp = ops.xp
|
|
|
|
# TODO if there is more than one example, give an error
|
|
# (or actually rework this to take multiple things)
|
|
example = list(examples)[0]
|
|
cidx = mention_idx
|
|
|
|
clusters_by_char = get_clusters_from_doc(example.reference)
|
|
# convert to token clusters, and give up if necessary
|
|
clusters = []
|
|
for cluster in clusters_by_char:
|
|
cc = []
|
|
for start_char, end_char in cluster:
|
|
span = example.predicted.char_span(start_char, end_char)
|
|
if span is None:
|
|
# TODO log more details
|
|
raise IndexError(Errors.E1043)
|
|
cc.append((span.start, span.end))
|
|
clusters.append(cc)
|
|
|
|
span_idxs = create_head_span_idxs(ops, len(example.predicted))
|
|
gscores = create_gold_scores(span_idxs, clusters)
|
|
# TODO fix type here. This is bools but asarray2f wants ints.
|
|
gscores = ops.asarray2f(gscores) # type: ignore
|
|
# top_gscores = xp.take_along_axis(gscores, cidx, axis=1)
|
|
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
|
|
# now add the placeholder
|
|
gold_placeholder = ~top_gscores.any(axis=1).T
|
|
gold_placeholder = xp.expand_dims(gold_placeholder, 1)
|
|
top_gscores = xp.concatenate((gold_placeholder, top_gscores), 1)
|
|
|
|
# boolean to float
|
|
top_gscores = ops.asarray2f(top_gscores)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
|
log_marg = ops.softmax(score_matrix + ops.xp.log(top_gscores), axis=1)
|
|
log_norm = ops.softmax(score_matrix, axis=1)
|
|
grad = log_norm - log_marg
|
|
loss = float((grad**2).sum())
|
|
|
|
return loss, grad
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Callable[[], Iterable[Example]],
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
) -> None:
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://spacy.io/api/coref#initialize (TODO)
|
|
"""
|
|
validate_get_examples(get_examples, "CoreferenceResolver.initialize")
|
|
|
|
X = []
|
|
Y = []
|
|
for ex in islice(get_examples(), 2):
|
|
X.append(ex.predicted)
|
|
Y.append(ex.reference)
|
|
|
|
assert len(X) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=X, Y=Y)
|