spaCy/spacy/tests/serialize/test_serialize_pipeline.py
Matthew Honnibal 6f5e308d17
Support negative examples in partial NER annotations (#8106)
* Support a cfg field in transition system

* Make NER 'has gold' check use right alignment for span

* Pass 'negative_samples_key' property into NER transition system

* Add field for negative samples to NER transition system

* Check neg_key in NER has_gold

* Support negative examples in NER oracle

* Test for negative examples in NER

* Fix name of config variable in NER

* Remove vestiges of old-style partial annotation

* Remove obsolete tests

* Add comment noting lack of support for negative samples in parser

* Additions to "neg examples" PR (#8201)

* add custom error and test for deprecated format

* add test for unlearning an entity

* add break also for Begin's cost

* add negative_samples_key property on Parser

* rename

* extend docs & fix some older docs issues

* add subclass constructors, clean up tests, fix docs

* add flaky test with ValueError if gold parse was not found

* remove ValueError if n_gold == 0

* fix docstring

* Hack in environment variables to try out training

* Remove hack

* Remove NER hack, and support 'negative O' samples

* Fix O oracle

* Fix transition parser

* Remove 'not O' from oracle

* Fix NER oracle

* check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation

* use set instead of list in consistency check

Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2021-06-17 17:33:00 +10:00

277 lines
9.5 KiB
Python

import pytest
from spacy import registry, Vocab
from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer
from spacy.pipeline import TextCategorizer, SentenceRecognizer, TrainablePipe
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
from spacy.pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
from spacy.lang.en import English
from thinc.api import Linear
import spacy
from ..util import make_tempdir
test_parsers = [DependencyParser, EntityRecognizer]
@pytest.fixture
def parser(en_vocab):
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
"beam_width": 1,
"beam_update_prob": 1.0,
"beam_density": 0.0,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(en_vocab, model, **config)
parser.add_label("nsubj")
return parser
@pytest.fixture
def blank_parser(en_vocab):
config = {
"learn_tokens": False,
"min_action_freq": 30,
"update_with_oracle_cut_size": 100,
"beam_width": 1,
"beam_update_prob": 1.0,
"beam_density": 0.0,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser = DependencyParser(en_vocab, model, **config)
return parser
@pytest.fixture
def taggers(en_vocab):
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
tagger1 = Tagger(en_vocab, model)
tagger2 = Tagger(en_vocab, model)
return tagger1, tagger2
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
config = {
"update_with_oracle_cut_size": 100,
"beam_width": 1,
"beam_update_prob": 1.0,
"beam_density": 0.0,
}
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser = Parser(en_vocab, model)
new_parser = Parser(en_vocab, model)
new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
bytes_2 = new_parser.to_bytes(exclude=["vocab"])
bytes_3 = parser.to_bytes(exclude=["vocab"])
assert len(bytes_2) == len(bytes_3)
assert bytes_2 == bytes_3
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_strings(Parser):
vocab1 = Vocab()
label = "FunnyLabel"
assert label not in vocab1.strings
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser1 = Parser(vocab1, model)
parser1.add_label(label)
assert label in parser1.vocab.strings
vocab2 = Vocab()
assert label not in vocab2.strings
parser2 = Parser(vocab2, model)
parser2 = parser2.from_bytes(parser1.to_bytes(exclude=["vocab"]))
assert label in parser2.vocab.strings
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
parser = Parser(en_vocab, model)
with make_tempdir() as d:
file_path = d / "parser"
parser.to_disk(file_path)
parser_d = Parser(en_vocab, model)
parser_d = parser_d.from_disk(file_path)
parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
assert len(parser_bytes) == len(parser_d_bytes)
assert parser_bytes == parser_d_bytes
def test_to_from_bytes(parser, blank_parser):
assert parser.model is not True
assert blank_parser.model is not True
assert blank_parser.moves.n_moves != parser.moves.n_moves
bytes_data = parser.to_bytes(exclude=["vocab"])
# the blank parser needs to be resized before we can call from_bytes
blank_parser.model.attrs["resize_output"](blank_parser.model, parser.moves.n_moves)
blank_parser.from_bytes(bytes_data)
assert blank_parser.model is not True
assert blank_parser.moves.n_moves == parser.moves.n_moves
def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
tagger1 = taggers[0]
tagger1_b = tagger1.to_bytes()
tagger1 = tagger1.from_bytes(tagger1_b)
assert tagger1.to_bytes() == tagger1_b
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
new_tagger1 = Tagger(en_vocab, model).from_bytes(tagger1_b)
new_tagger1_b = new_tagger1.to_bytes()
assert len(new_tagger1_b) == len(tagger1_b)
assert new_tagger1_b == tagger1_b
def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
tagger1, tagger2 = taggers
with make_tempdir() as d:
file_path1 = d / "tagger1"
file_path2 = d / "tagger2"
tagger1.to_disk(file_path1)
tagger2.to_disk(file_path2)
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
tagger1_d = Tagger(en_vocab, model).from_disk(file_path1)
tagger2_d = Tagger(en_vocab, model).from_disk(file_path2)
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
def test_serialize_tagger_strings(en_vocab, de_vocab, taggers):
label = "SomeWeirdLabel"
assert label not in en_vocab.strings
assert label not in de_vocab.strings
tagger = taggers[0]
assert label not in tagger.vocab.strings
with make_tempdir() as d:
# check that custom labels are serialized as part of the component's strings.jsonl
tagger.add_label(label)
assert label in tagger.vocab.strings
file_path = d / "tagger1"
tagger.to_disk(file_path)
# ensure that the custom strings are loaded back in when using the tagger in another pipeline
cfg = {"model": DEFAULT_TAGGER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
tagger2 = Tagger(de_vocab, model).from_disk(file_path)
assert label in tagger2.vocab.strings
def test_serialize_textcat_empty(en_vocab):
# See issue #1105
cfg = {"model": DEFAULT_SINGLE_TEXTCAT_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
textcat = TextCategorizer(en_vocab, model, threshold=0.5)
textcat.to_bytes(exclude=["vocab"])
@pytest.mark.parametrize("Parser", test_parsers)
def test_serialize_pipe_exclude(en_vocab, Parser):
cfg = {"model": DEFAULT_PARSER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
def get_new_parser():
new_parser = Parser(en_vocab, model)
return new_parser
parser = Parser(en_vocab, model)
parser.cfg["foo"] = "bar"
new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
assert "foo" in new_parser.cfg
new_parser = get_new_parser().from_bytes(
parser.to_bytes(exclude=["vocab"]), exclude=["cfg"]
)
assert "foo" not in new_parser.cfg
new_parser = get_new_parser().from_bytes(
parser.to_bytes(exclude=["cfg"]), exclude=["vocab"]
)
assert "foo" not in new_parser.cfg
def test_serialize_sentencerecognizer(en_vocab):
cfg = {"model": DEFAULT_SENTER_MODEL}
model = registry.resolve(cfg, validate=True)["model"]
sr = SentenceRecognizer(en_vocab, model)
sr_b = sr.to_bytes()
sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b)
assert sr.to_bytes() == sr_d.to_bytes()
def test_serialize_pipeline_disable_enable():
nlp = English()
nlp.add_pipe("ner")
nlp.add_pipe("tagger")
nlp.disable_pipe("tagger")
assert nlp.config["nlp"]["disabled"] == ["tagger"]
config = nlp.config.copy()
nlp2 = English.from_config(config)
assert nlp2.pipe_names == ["ner"]
assert nlp2.component_names == ["ner", "tagger"]
assert nlp2.disabled == ["tagger"]
assert nlp2.config["nlp"]["disabled"] == ["tagger"]
with make_tempdir() as d:
nlp2.to_disk(d)
nlp3 = spacy.load(d)
assert nlp3.pipe_names == ["ner"]
assert nlp3.component_names == ["ner", "tagger"]
with make_tempdir() as d:
nlp3.to_disk(d)
nlp4 = spacy.load(d, disable=["ner"])
assert nlp4.pipe_names == []
assert nlp4.component_names == ["ner", "tagger"]
assert nlp4.disabled == ["ner", "tagger"]
with make_tempdir() as d:
nlp.to_disk(d)
nlp5 = spacy.load(d, exclude=["tagger"])
assert nlp5.pipe_names == ["ner"]
assert nlp5.component_names == ["ner"]
assert nlp5.disabled == []
def test_serialize_custom_trainable_pipe():
class BadCustomPipe1(TrainablePipe):
def __init__(self, vocab):
pass
class BadCustomPipe2(TrainablePipe):
def __init__(self, vocab):
self.vocab = vocab
self.model = None
class CustomPipe(TrainablePipe):
def __init__(self, vocab, model):
self.vocab = vocab
self.model = model
pipe = BadCustomPipe1(Vocab())
with pytest.raises(ValueError):
pipe.to_bytes()
with make_tempdir() as d:
with pytest.raises(ValueError):
pipe.to_disk(d)
pipe = BadCustomPipe2(Vocab())
with pytest.raises(ValueError):
pipe.to_bytes()
with make_tempdir() as d:
with pytest.raises(ValueError):
pipe.to_disk(d)
pipe = CustomPipe(Vocab(), Linear())
pipe_bytes = pipe.to_bytes()
new_pipe = CustomPipe(Vocab(), Linear()).from_bytes(pipe_bytes)
assert new_pipe.to_bytes() == pipe_bytes
with make_tempdir() as d:
pipe.to_disk(d)
new_pipe = CustomPipe(Vocab(), Linear()).from_disk(d)
assert new_pipe.to_bytes() == pipe_bytes