spaCy/spacy/tests/pipeline/test_spancat.py
2022-08-30 11:19:57 +02:00

442 lines
15 KiB
Python

import pytest
import numpy
from numpy.testing import assert_array_equal, assert_almost_equal
from thinc.api import get_current_ops, Ragged
from spacy import util
from spacy.lang.en import English
from spacy.language import Language
from spacy.tokens import SpanGroup
from spacy.tokens._dict_proxies import SpanGroups
from spacy.training import Example
from spacy.util import fix_random_seed, registry, make_tempdir
OPS = get_current_ops()
SPAN_KEY = "labeled_spans"
TRAIN_DATA = [
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
(
"I like London and Berlin.",
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}},
),
]
TRAIN_DATA_OVERLAPPING = [
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
(
"I like London and Berlin",
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC"), (7, 24, "DOUBLE_LOC")]}},
),
("", {"spans": {SPAN_KEY: []}}),
]
def make_examples(nlp, data=TRAIN_DATA):
train_examples = []
for t in data:
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
train_examples.append(eg)
return train_examples
def test_no_label():
nlp = Language()
nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
with pytest.raises(ValueError):
nlp.initialize()
def test_no_resize():
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
spancat.add_label("Thing")
spancat.add_label("Phrase")
assert spancat.labels == ("Thing", "Phrase")
nlp.initialize()
assert spancat.model.get_dim("nO") == 2
# this throws an error because the spancat can't be resized after initialization
with pytest.raises(ValueError):
spancat.add_label("Stuff")
def test_implicit_labels():
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
assert spancat.labels == ("PERSON", "LOC")
def test_explicit_labels():
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
assert len(spancat.labels) == 0
spancat.add_label("PERSON")
spancat.add_label("LOC")
nlp.initialize()
assert spancat.labels == ("PERSON", "LOC")
# TODO figure out why this is flaky
@pytest.mark.skip(reason="Test is unreliable for unknown reason")
def test_doc_gc():
# If the Doc object is garbage collected, the spans won't be functional afterwards
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
spancat.add_label("PERSON")
nlp.initialize()
texts = [
"Just a sentence.",
"I like London and Berlin",
"I like Berlin",
"I eat ham.",
]
all_spans = [doc.spans for doc in nlp.pipe(texts)]
for text, spangroups in zip(texts, all_spans):
assert isinstance(spangroups, SpanGroups)
for key, spangroup in spangroups.items():
assert isinstance(spangroup, SpanGroup)
# XXX This fails with length 0 sometimes
assert len(spangroup) > 0
with pytest.raises(RuntimeError):
span = spangroup[0]
@pytest.mark.parametrize(
"max_positive,nr_results", [(None, 4), (1, 2), (2, 3), (3, 4), (4, 4)]
)
def test_make_spangroup(max_positive, nr_results):
fix_random_seed(0)
nlp = Language()
spancat = nlp.add_pipe(
"spancat",
config={"spans_key": SPAN_KEY, "threshold": 0.5, "max_positive": max_positive},
)
doc = nlp.make_doc("Greater London")
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2])
indices = ngram_suggester([doc])[0].dataXd
assert_array_equal(OPS.to_numpy(indices), numpy.asarray([[0, 1], [1, 2], [0, 2]]))
labels = ["Thing", "City", "Person", "GreatCity"]
scores = numpy.asarray(
[[0.2, 0.4, 0.3, 0.1], [0.1, 0.6, 0.2, 0.4], [0.8, 0.7, 0.3, 0.9]], dtype="f"
)
spangroup = spancat._make_span_group(doc, indices, scores, labels)
assert len(spangroup) == nr_results
# first span is always the second token "London"
assert spangroup[0].text == "London"
assert spangroup[0].label_ == "City"
assert_almost_equal(0.6, spangroup.attrs["scores"][0], 5)
# second span depends on the number of positives that were allowed
assert spangroup[1].text == "Greater London"
if max_positive == 1:
assert spangroup[1].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup.attrs["scores"][1], 5)
else:
assert spangroup[1].label_ == "Thing"
assert_almost_equal(0.8, spangroup.attrs["scores"][1], 5)
if nr_results > 2:
assert spangroup[2].text == "Greater London"
if max_positive == 2:
assert spangroup[2].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup.attrs["scores"][2], 5)
else:
assert spangroup[2].label_ == "City"
assert_almost_equal(0.7, spangroup.attrs["scores"][2], 5)
assert spangroup[-1].text == "Greater London"
assert spangroup[-1].label_ == "GreatCity"
assert_almost_equal(0.9, spangroup.attrs["scores"][-1], 5)
def test_ngram_suggester(en_tokenizer):
# test different n-gram lengths
for size in [1, 2, 3]:
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[size])
docs = [
en_tokenizer(text)
for text in [
"a",
"a b",
"a b c",
"a b c d",
"a b c d e",
"a " * 100,
]
]
ngrams = ngram_suggester(docs)
# span sizes are correct
for s in ngrams.data:
assert s[1] - s[0] == size
# spans are within docs
offset = 0
for i, doc in enumerate(docs):
spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]]
spans_set = set()
for span in spans:
assert 0 <= span[0] < len(doc)
assert 0 < span[1] <= len(doc)
spans_set.add((int(span[0]), int(span[1])))
# spans are unique
assert spans.shape[0] == len(spans_set)
offset += ngrams.lengths[i]
# the number of spans is correct
assert_array_equal(
OPS.to_numpy(ngrams.lengths),
[max(0, len(doc) - (size - 1)) for doc in docs],
)
# test 1-3-gram suggestions
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
docs = [
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
]
ngrams = ngram_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams.lengths), [1, 3, 6, 9, 12])
assert_array_equal(
OPS.to_numpy(ngrams.data),
[
# doc 0
[0, 1],
# doc 1
[0, 1],
[1, 2],
[0, 2],
# doc 2
[0, 1],
[1, 2],
[2, 3],
[0, 2],
[1, 3],
[0, 3],
# doc 3
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[0, 2],
[1, 3],
[2, 4],
[0, 3],
[1, 4],
# doc 4
[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[0, 2],
[1, 3],
[2, 4],
[3, 5],
[0, 3],
[1, 4],
[2, 5],
],
)
# test some empty docs
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
docs = [en_tokenizer(text) for text in ["", "a", ""]]
ngrams = ngram_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
# test all empty docs
ngram_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1])
docs = [en_tokenizer(text) for text in ["", "", ""]]
ngrams = ngram_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams.lengths), [len(doc) for doc in docs])
def test_ngram_sizes(en_tokenizer):
# test that the range suggester works well
size_suggester = registry.misc.get("spacy.ngram_suggester.v1")(sizes=[1, 2, 3])
suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
range_suggester = suggester_factory(min_size=1, max_size=3)
docs = [
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
]
ngrams_1 = size_suggester(docs)
ngrams_2 = range_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams_1.lengths), [1, 3, 6, 9, 12])
assert_array_equal(OPS.to_numpy(ngrams_1.lengths), OPS.to_numpy(ngrams_2.lengths))
assert_array_equal(OPS.to_numpy(ngrams_1.data), OPS.to_numpy(ngrams_2.data))
# one more variation
suggester_factory = registry.misc.get("spacy.ngram_range_suggester.v1")
range_suggester = suggester_factory(min_size=2, max_size=4)
ngrams_3 = range_suggester(docs)
assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
def test_overfitting_IO():
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 2
assert set(spancat.labels) == {"LOC", "PERSON"}
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["spancat"] < 0.01
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
spans = doc.spans[SPAN_KEY]
assert len(spans) == 2
assert len(spans.attrs["scores"]) == 2
assert min(spans.attrs["scores"]) > 0.9
assert set([span.text for span in spans]) == {"London", "Berlin"}
assert set([span.label_ for span in spans]) == {"LOC"}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 2
assert len(spans2.attrs["scores"]) == 2
assert min(spans2.attrs["scores"]) > 0.9
assert set([span.text for span in spans2]) == {"London", "Berlin"}
assert set([span.label_ for span in spans2]) == {"LOC"}
# Test scoring
scores = nlp.evaluate(train_examples)
assert f"spans_{SPAN_KEY}_f" in scores
assert scores[f"spans_{SPAN_KEY}_p"] == 1.0
assert scores[f"spans_{SPAN_KEY}_r"] == 1.0
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
# also test that the spancat works for just a single entity in a sentence
doc = nlp("London")
assert len(doc.spans[spancat.key]) == 1
def test_overfitting_IO_overlapping():
# Test for overfitting on overlapping entities
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp, data=TRAIN_DATA_OVERLAPPING)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 3
assert set(spancat.labels) == {"PERSON", "LOC", "DOUBLE_LOC"}
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["spancat"] < 0.01
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
spans = doc.spans[SPAN_KEY]
assert len(spans) == 3
assert len(spans.attrs["scores"]) == 3
assert min(spans.attrs["scores"]) > 0.9
assert set([span.text for span in spans]) == {
"London",
"Berlin",
"London and Berlin",
}
assert set([span.label_ for span in spans]) == {"LOC", "DOUBLE_LOC"}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 3
assert len(spans2.attrs["scores"]) == 3
assert min(spans2.attrs["scores"]) > 0.9
assert set([span.text for span in spans2]) == {
"London",
"Berlin",
"London and Berlin",
}
assert set([span.label_ for span in spans2]) == {"LOC", "DOUBLE_LOC"}
def test_zero_suggestions():
# Test with a suggester that returns 0 suggestions
@registry.misc("test_zero_suggester")
def make_zero_suggester():
def zero_suggester(docs, *, ops=None):
if ops is None:
ops = get_current_ops()
return Ragged(
ops.xp.zeros((0, 0), dtype="i"), ops.xp.zeros((len(docs),), dtype="i")
)
return zero_suggester
fix_random_seed(0)
nlp = English()
spancat = nlp.add_pipe(
"spancat",
config={"suggester": {"@misc": "test_zero_suggester"}, "spans_key": SPAN_KEY},
)
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert spancat.model.get_dim("nO") == 2
assert set(spancat.labels) == {"LOC", "PERSON"}
nlp.update(train_examples, sgd=optimizer)
def test_set_candidates():
nlp = Language()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
texts = [
"Just a sentence.",
"I like London and Berlin",
"I like Berlin",
"I eat ham.",
]
docs = [nlp(text) for text in texts]
spancat.set_candidates(docs)
assert len(docs) == len(texts)
assert type(docs[0].spans["candidates"]) == SpanGroup
assert len(docs[0].spans["candidates"]) == 9
assert docs[0].spans["candidates"][0].text == "Just"
assert docs[0].spans["candidates"][4].text == "Just a"
def test_save_activations():
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
nlp = English()
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
train_examples = make_examples(nlp)
nlp.initialize(get_examples=lambda: train_examples)
nO = spancat.model.get_dim("nO")
assert nO == 2
assert set(spancat.labels) == {"LOC", "PERSON"}
doc = nlp("This is a test.")
assert "spancat" not in doc.activations
spancat.save_activations = True
doc = nlp("This is a test.")
assert set(doc.activations["spancat"].keys()) == {"indices", "scores"}
assert doc.activations["spancat"]["indices"].shape == (12, 2)
assert doc.activations["spancat"]["scores"].shape == (12, nO)