mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* add label smoothing * use True/False instead of floats * add entropy to debug data * formatting * docs * change test to check difference in distributions * Update website/docs/api/tagger.mdx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Update spacy/pipeline/tagger.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * bool -> float * update docs * fix seed * black * update tests to use label_smoothing = 0.0 * set default to 0.0, update quickstart * Update spacy/pipeline/tagger.pyx Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * update morphologizer, tagger test * fix morph docs * add url to docs --------- Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
		
			
				
	
	
		
			442 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			442 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| ---
 | |
| title: Morphologizer
 | |
| tag: class
 | |
| source: spacy/pipeline/morphologizer.pyx
 | |
| version: 3
 | |
| teaser: 'Pipeline component for predicting morphological features'
 | |
| api_base_class: /api/tagger
 | |
| api_string_name: morphologizer
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A trainable pipeline component to predict morphological features and
 | |
| coarse-grained POS tags following the Universal Dependencies
 | |
| [UPOS](https://universaldependencies.org/u/pos/index.html) and
 | |
| [FEATS](https://universaldependencies.org/format.html#morphological-annotation)
 | |
| annotation guidelines.
 | |
| 
 | |
| ## Assigned Attributes {id="assigned-attributes"}
 | |
| 
 | |
| Predictions are saved to `Token.morph` and `Token.pos`.
 | |
| 
 | |
| | Location      | Value                                     |
 | |
| | ------------- | ----------------------------------------- |
 | |
| | `Token.pos`   | The UPOS part of speech (hash). ~~int~~   |
 | |
| | `Token.pos_`  | The UPOS part of speech. ~~str~~          |
 | |
| | `Token.morph` | Morphological features. ~~MorphAnalysis~~ |
 | |
| 
 | |
| ## Config and implementation {id="config"}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.morphologizer import DEFAULT_MORPH_MODEL
 | |
| > config = {"model": DEFAULT_MORPH_MODEL}
 | |
| > nlp.add_pipe("morphologizer", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting                                        | Description                                                                                                                                                                                                                                                            |
 | |
| | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `model`                                        | The model to use. Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~                                                                                                                                                                |
 | |
| | `overwrite` <Tag variant="new">3.2</Tag>       | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~                                                                                                                                                                                  |
 | |
| | `extend` <Tag variant="new">3.2</Tag>          | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~                                                                                                                      |
 | |
| | `scorer` <Tag variant="new">3.2</Tag>          | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ |
 | |
| | `label_smoothing` <Tag variant="new">3.6</Tag> | [Label smoothing](https://arxiv.org/abs/1906.02629) factor. Defaults to `0.0`. ~~float~~                                                                                                                                                                               |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/morphologizer.pyx
 | |
| ```
 | |
| 
 | |
| ## Morphologizer.\_\_init\_\_ {id="init",tag="method"}
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| The `overwrite` and `extend` settings determine how existing annotation is
 | |
| handled (with the example for existing annotation `A=B|C=D` + predicted
 | |
| annotation `C=E|X=Y`):
 | |
| 
 | |
| - `overwrite=True, extend=True`: overwrite values of existing features, add any
 | |
|   new features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=E|X=Y`)
 | |
| - `overwrite=True, extend=False`: overwrite completely, removing any existing
 | |
|   features (`A=B|C=D` + `C=E|X=Y` → `C=E|X=Y`)
 | |
| - `overwrite=False, extend=True`: keep values of existing features, add any new
 | |
|   features (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D|X=Y`)
 | |
| - `overwrite=False, extend=False`: do not modify the existing annotation if set
 | |
|   (`A=B|C=D` + `C=E|X=Y` → `A=B|C=D`)
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| >
 | |
| > # Construction via create_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_morphologizer"}}
 | |
| > morphologizer = nlp.add_pipe("morphologizer", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import Morphologizer
 | |
| > morphologizer = Morphologizer(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| | Name                                     | Description                                                                                                                                                                                                                                                            |
 | |
| | ---------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`                                  | The shared vocabulary. ~~Vocab~~                                                                                                                                                                                                                                       |
 | |
| | `model`                                  | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~                                                                                                                                                   |
 | |
| | `name`                                   | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~                                                                                                                                                                    |
 | |
| | _keyword-only_                           |                                                                                                                                                                                                                                                                        |
 | |
| | `overwrite` <Tag variant="new">3.2</Tag> | Whether the values of existing features are overwritten. Defaults to `True`. ~~bool~~                                                                                                                                                                                  |
 | |
| | `extend` <Tag variant="new">3.2</Tag>    | Whether existing feature types (whose values may or may not be overwritten depending on `overwrite`) are preserved. Defaults to `False`. ~~bool~~                                                                                                                      |
 | |
| | `scorer` <Tag variant="new">3.2</Tag>    | The scoring method. Defaults to [`Scorer.score_token_attr`](/api/scorer#score_token_attr) for the attributes `"pos"` and `"morph"` and [`Scorer.score_token_attr_per_feat`](/api/scorer#score_token_attr_per_feat) for the attribute `"morph"`. ~~Optional[Callable]~~ |
 | |
| 
 | |
| ## Morphologizer.\_\_call\_\_ {id="call",tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](/api/morphologizer#call) and [`pipe`](/api/morphologizer#pipe)
 | |
| delegate to the [`predict`](/api/morphologizer#predict) and
 | |
| [`set_annotations`](/api/morphologizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > # This usually happens under the hood
 | |
| > processed = morphologizer(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## Morphologizer.pipe {id="pipe",tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/morphologizer#call) and
 | |
| [`pipe`](/api/morphologizer#pipe) delegate to the
 | |
| [`predict`](/api/morphologizer#predict) and
 | |
| [`set_annotations`](/api/morphologizer#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > for doc in morphologizer.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## Morphologizer.initialize {id="initialize",tag="method"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. **At least one example
 | |
| should be supplied.** The data examples are used to **initialize the model** of
 | |
| the component and can either be the full training data or a representative
 | |
| sample. Initialization includes validating the network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize) and lets you customize
 | |
| arguments it receives via the
 | |
| [`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | |
| config.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > morphologizer.initialize(lambda: examples, nlp=nlp)
 | |
| > ```
 | |
| >
 | |
| > ```ini
 | |
| > ### config.cfg
 | |
| > [initialize.components.morphologizer]
 | |
| >
 | |
| > [initialize.components.morphologizer.labels]
 | |
| > @readers = "spacy.read_labels.v1"
 | |
| > path = "corpus/labels/morphologizer.json
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                                                                                                                                       |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~                                                                                                                                                                                                                        |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                                                                                                                                                                                   |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                                                                                                                              |
 | |
| | `labels`       | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[dict]~~ |
 | |
| 
 | |
| ## Morphologizer.predict {id="predict",tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | |
| modifying them.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > scores = morphologizer.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                 |
 | |
| | ----------- | ------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~ |
 | |
| | **RETURNS** | The model's prediction for each document.   |
 | |
| 
 | |
| ## Morphologizer.set_annotations {id="set_annotations",tag="method"}
 | |
| 
 | |
| Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > scores = morphologizer.predict([doc1, doc2])
 | |
| > morphologizer.set_annotations([doc1, doc2], scores)
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                             |
 | |
| | -------- | ------------------------------------------------------- |
 | |
| | `docs`   | The documents to modify. ~~Iterable[Doc]~~              |
 | |
| | `scores` | The scores to set, produced by `Morphologizer.predict`. |
 | |
| 
 | |
| ## Morphologizer.update {id="update",tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects containing the
 | |
| predictions and gold-standard annotations, and update the component's model.
 | |
| Delegates to [`predict`](/api/morphologizer#predict) and
 | |
| [`get_loss`](/api/morphologizer#get_loss).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = morphologizer.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## Morphologizer.get_loss {id="get_loss",tag="method"}
 | |
| 
 | |
| Find the loss and gradient of loss for the batch of documents and their
 | |
| predicted scores.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > scores = morphologizer.predict([eg.predicted for eg in examples])
 | |
| > loss, d_loss = morphologizer.get_loss(examples, scores)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                                 |
 | |
| | ----------- | --------------------------------------------------------------------------- |
 | |
| | `examples`  | The batch of examples. ~~Iterable[Example]~~                                |
 | |
| | `scores`    | Scores representing the model's predictions.                                |
 | |
| | **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
 | |
| 
 | |
| ## Morphologizer.create_optimizer {id="create_optimizer",tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > optimizer = morphologizer.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## Morphologizer.use_params {id="use_params",tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > with morphologizer.use_params(optimizer.averages):
 | |
| >     morphologizer.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## Morphologizer.add_label {id="add_label",tag="method"}
 | |
| 
 | |
| Add a new label to the pipe. If the `Morphologizer` should set annotations for
 | |
| both `pos` and `morph`, the label should include the UPOS as the feature `POS`.
 | |
| Raises an error if the output dimension is already set, or if the model has
 | |
| already been fully [initialized](#initialize). Note that you don't have to call
 | |
| this method if you provide a **representative data sample** to the
 | |
| [`initialize`](#initialize) method. In this case, all labels found in the sample
 | |
| will be automatically added to the model, and the output dimension will be
 | |
| [inferred](/usage/layers-architectures#thinc-shape-inference) automatically.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                 |
 | |
| | ----------- | ----------------------------------------------------------- |
 | |
| | `label`     | The label to add. ~~str~~                                   |
 | |
| | **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
 | |
| 
 | |
| ## Morphologizer.to_disk {id="to_disk",tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > morphologizer.to_disk("/path/to/morphologizer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## Morphologizer.from_disk {id="from_disk",tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > morphologizer.from_disk("/path/to/morphologizer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `Morphologizer` object. ~~Morphologizer~~                                          |
 | |
| 
 | |
| ## Morphologizer.to_bytes {id="to_bytes",tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > morphologizer_bytes = morphologizer.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `Morphologizer` object. ~~bytes~~                                |
 | |
| 
 | |
| ## Morphologizer.from_bytes {id="from_bytes",tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer_bytes = morphologizer.to_bytes()
 | |
| > morphologizer = nlp.add_pipe("morphologizer")
 | |
| > morphologizer.from_bytes(morphologizer_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `Morphologizer` object. ~~Morphologizer~~                                               |
 | |
| 
 | |
| ## Morphologizer.labels {id="labels",tag="property"}
 | |
| 
 | |
| The labels currently added to the component in the Universal Dependencies
 | |
| [FEATS](https://universaldependencies.org/format.html#morphological-annotation)
 | |
| format. Note that even for a blank component, this will always include the
 | |
| internal empty label `_`. If POS features are used, the labels will include the
 | |
| coarse-grained POS as the feature `POS`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > morphologizer.add_label("Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin")
 | |
| > assert "Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin" in morphologizer.labels
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                            |
 | |
| | ----------- | ------------------------------------------------------ |
 | |
| | **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
 | |
| 
 | |
| ## Morphologizer.label_data {id="label_data",tag="property",version="3"}
 | |
| 
 | |
| The labels currently added to the component and their internal meta information.
 | |
| This is the data generated by [`init labels`](/api/cli#init-labels) and used by
 | |
| [`Morphologizer.initialize`](/api/morphologizer#initialize) to initialize the
 | |
| model with a pre-defined label set.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > labels = morphologizer.label_data
 | |
| > morphologizer.initialize(lambda: [], nlp=nlp, labels=labels)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                     |
 | |
| | ----------- | ----------------------------------------------- |
 | |
| | **RETURNS** | The label data added to the component. ~~dict~~ |
 | |
| 
 | |
| ## Serialization fields {id="serialization-fields"}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = morphologizer.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |