mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	NeuralDependencyParser --> DependencyParser NeuralEntityRecognizer --> EntityRecognizer TokenVectorEncoder --> Tensorizer NeuralLabeller --> MultitaskObjective
		
			
				
	
	
		
			84 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| from thinc.neural import Model
 | |
| import pytest
 | |
| import numpy
 | |
| 
 | |
| from ..._ml import chain, Tok2Vec, doc2feats
 | |
| from ...vocab import Vocab
 | |
| from ...pipeline import Tensorizer
 | |
| from ...syntax.arc_eager import ArcEager
 | |
| from ...syntax.nn_parser import Parser
 | |
| from ...tokens.doc import Doc
 | |
| from ...gold import GoldParse
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def vocab():
 | |
|     return Vocab()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def arc_eager(vocab):
 | |
|     actions = ArcEager.get_actions(left_labels=['L'], right_labels=['R'])
 | |
|     return ArcEager(vocab.strings, actions)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def tok2vec():
 | |
|     return Tok2Vec(8, 100)
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def parser(vocab, arc_eager):
 | |
|     return Parser(vocab, moves=arc_eager, model=None)
 | |
| 
 | |
| @pytest.fixture
 | |
| def model(arc_eager, tok2vec):
 | |
|     return Parser.Model(arc_eager.n_moves, token_vector_width=tok2vec.nO,
 | |
|                         hist_size=0)[0]
 | |
| 
 | |
| @pytest.fixture
 | |
| def doc(vocab):
 | |
|     return Doc(vocab, words=['a', 'b', 'c'])
 | |
| 
 | |
| @pytest.fixture
 | |
| def gold(doc):
 | |
|     return GoldParse(doc, heads=[1, 1, 1], deps=['L', 'ROOT', 'R'])
 | |
| 
 | |
| 
 | |
| def test_can_init_nn_parser(parser):
 | |
|     assert parser.model is None
 | |
| 
 | |
| 
 | |
| def test_build_model(parser):
 | |
|     parser.model = Parser.Model(parser.moves.n_moves, hist_size=0)[0]
 | |
|     assert parser.model is not None
 | |
| 
 | |
| 
 | |
| def test_predict_doc(parser, tok2vec, model, doc):
 | |
|     doc.tensor = tok2vec([doc])[0]
 | |
|     parser.model = model
 | |
|     parser(doc)
 | |
| 
 | |
| 
 | |
| def test_update_doc(parser, model, doc, gold):
 | |
|     parser.model = model
 | |
|     def optimize(weights, gradient, key=None):
 | |
|         weights -= 0.001 * gradient
 | |
|     parser.update([doc], [gold], sgd=optimize)
 | |
| 
 | |
| 
 | |
| def test_predict_doc_beam(parser, model, doc):
 | |
|     parser.model = model
 | |
|     parser(doc, beam_width=32, beam_density=0.001)
 | |
| 
 | |
| 
 | |
| def test_update_doc_beam(parser, model, doc, gold):
 | |
|     parser.model = model
 | |
|     def optimize(weights, gradient, key=None):
 | |
|         weights -= 0.001 * gradient
 | |
|     parser.update_beam([doc], [gold], sgd=optimize)
 | |
| 
 | |
| 
 |