mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
a5cd203284
* Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
128 lines
4.0 KiB
Python
128 lines
4.0 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
import pytest
|
|
|
|
|
|
def test_en_tokenizer_handles_basic_contraction(en_tokenizer):
|
|
text = "don't giggle"
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 3
|
|
assert tokens[1].text == "n't"
|
|
text = "i said don't!"
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 5
|
|
assert tokens[4].text == "!"
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["`ain't", """"isn't""", "can't!"])
|
|
def test_en_tokenizer_handles_basic_contraction_punct(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 3
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text_poss,text", [("Robin's", "Robin"), ("Alexis's", "Alexis")]
|
|
)
|
|
def test_en_tokenizer_handles_poss_contraction(en_tokenizer, text_poss, text):
|
|
tokens = en_tokenizer(text_poss)
|
|
assert len(tokens) == 2
|
|
assert tokens[0].text == text
|
|
assert tokens[1].text == "'s"
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["schools'", "Alexis'"])
|
|
def test_en_tokenizer_splits_trailing_apos(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 2
|
|
assert tokens[0].text == text.split("'")[0]
|
|
assert tokens[1].text == "'"
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["'em", "nothin'", "ol'"])
|
|
def test_en_tokenizer_doesnt_split_apos_exc(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 1
|
|
assert tokens[0].text == text
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["we'll", "You'll", "there'll"])
|
|
def test_en_tokenizer_handles_ll_contraction(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 2
|
|
assert tokens[0].text == text.split("'")[0]
|
|
assert tokens[1].text == "'ll"
|
|
assert tokens[1].lemma_ == "will"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text_lower,text_title", [("can't", "Can't"), ("ain't", "Ain't")]
|
|
)
|
|
def test_en_tokenizer_handles_capitalization(en_tokenizer, text_lower, text_title):
|
|
tokens_lower = en_tokenizer(text_lower)
|
|
tokens_title = en_tokenizer(text_title)
|
|
assert tokens_title[0].text == tokens_lower[0].text.title()
|
|
assert tokens_lower[0].text == tokens_title[0].text.lower()
|
|
assert tokens_lower[1].text == tokens_title[1].text
|
|
|
|
|
|
@pytest.mark.parametrize("pron", ["I", "You", "He", "She", "It", "We", "They"])
|
|
@pytest.mark.parametrize("contraction", ["'ll", "'d"])
|
|
def test_en_tokenizer_keeps_title_case(en_tokenizer, pron, contraction):
|
|
tokens = en_tokenizer(pron + contraction)
|
|
assert tokens[0].text == pron
|
|
assert tokens[1].text == contraction
|
|
|
|
|
|
@pytest.mark.parametrize("exc", ["Ill", "ill", "Hell", "hell", "Well", "well"])
|
|
def test_en_tokenizer_excludes_ambiguous(en_tokenizer, exc):
|
|
tokens = en_tokenizer(exc)
|
|
assert len(tokens) == 1
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"wo_punct,w_punct", [("We've", "`We've"), ("couldn't", "couldn't)")]
|
|
)
|
|
def test_en_tokenizer_splits_defined_punct(en_tokenizer, wo_punct, w_punct):
|
|
tokens = en_tokenizer(wo_punct)
|
|
assert len(tokens) == 2
|
|
tokens = en_tokenizer(w_punct)
|
|
assert len(tokens) == 3
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["e.g.", "p.m.", "Jan.", "Dec.", "Inc."])
|
|
def test_en_tokenizer_handles_abbr(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 1
|
|
|
|
|
|
def test_en_tokenizer_handles_exc_in_text(en_tokenizer):
|
|
text = "It's mediocre i.e. bad."
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 6
|
|
assert tokens[3].text == "i.e."
|
|
|
|
|
|
@pytest.mark.parametrize("text", ["1am", "12a.m.", "11p.m.", "4pm"])
|
|
def test_en_tokenizer_handles_times(en_tokenizer, text):
|
|
tokens = en_tokenizer(text)
|
|
assert len(tokens) == 2
|
|
assert tokens[1].lemma_ in ["a.m.", "p.m."]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"text,norms", [("I'm", ["i", "am"]), ("shan't", ["shall", "not"])]
|
|
)
|
|
def test_en_tokenizer_norm_exceptions(en_tokenizer, text, norms):
|
|
tokens = en_tokenizer(text)
|
|
assert [token.norm_ for token in tokens] == norms
|
|
|
|
|
|
@pytest.mark.skip
|
|
@pytest.mark.parametrize(
|
|
"text,norm", [("radicalised", "radicalized"), ("cuz", "because")]
|
|
)
|
|
def test_en_lex_attrs_norm_exceptions(en_tokenizer, text, norm):
|
|
tokens = en_tokenizer(text)
|
|
assert tokens[0].norm_ == norm
|