mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
		
			
				
	
	
		
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| import re
 | |
| 
 | |
| from spacy.language import Language
 | |
| from spacy.tokenizer import Tokenizer
 | |
| 
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def meta_data():
 | |
|     return {
 | |
|         "name": "name-in-fixture",
 | |
|         "version": "version-in-fixture",
 | |
|         "description": "description-in-fixture",
 | |
|         "author": "author-in-fixture",
 | |
|         "email": "email-in-fixture",
 | |
|         "url": "url-in-fixture",
 | |
|         "license": "license-in-fixture",
 | |
|         "vectors": {"width": 0, "vectors": 0, "keys": 0, "name": None},
 | |
|     }
 | |
| 
 | |
| 
 | |
| def test_serialize_language_meta_disk(meta_data):
 | |
|     language = Language(meta=meta_data)
 | |
|     with make_tempdir() as d:
 | |
|         language.to_disk(d)
 | |
|         new_language = Language().from_disk(d)
 | |
|     assert new_language.meta == language.meta
 | |
| 
 | |
| 
 | |
| def test_serialize_with_custom_tokenizer():
 | |
|     """Test that serialization with custom tokenizer works without token_match.
 | |
|     See: https://support.prodi.gy/t/how-to-save-a-custom-tokenizer/661/2
 | |
|     """
 | |
|     prefix_re = re.compile(r"""1/|2/|:[0-9][0-9][A-K]:|:[0-9][0-9]:""")
 | |
|     suffix_re = re.compile(r"""""")
 | |
|     infix_re = re.compile(r"""[~]""")
 | |
| 
 | |
|     def custom_tokenizer(nlp):
 | |
|         return Tokenizer(
 | |
|             nlp.vocab,
 | |
|             {},
 | |
|             prefix_search=prefix_re.search,
 | |
|             suffix_search=suffix_re.search,
 | |
|             infix_finditer=infix_re.finditer,
 | |
|         )
 | |
| 
 | |
|     nlp = Language()
 | |
|     nlp.tokenizer = custom_tokenizer(nlp)
 | |
|     with make_tempdir() as d:
 | |
|         nlp.to_disk(d)
 | |
| 
 | |
| 
 | |
| def test_serialize_language_exclude(meta_data):
 | |
|     name = "name-in-fixture"
 | |
|     nlp = Language(meta=meta_data)
 | |
|     assert nlp.meta["name"] == name
 | |
|     new_nlp = Language().from_bytes(nlp.to_bytes())
 | |
|     assert new_nlp.meta["name"] == name
 | |
|     new_nlp = Language().from_bytes(nlp.to_bytes(), exclude=["meta"])
 | |
|     assert not new_nlp.meta["name"] == name
 | |
|     new_nlp = Language().from_bytes(nlp.to_bytes(exclude=["meta"]))
 | |
|     assert not new_nlp.meta["name"] == name
 | |
|     with pytest.raises(ValueError):
 | |
|         nlp.to_bytes(meta=False)
 | |
|     with pytest.raises(ValueError):
 | |
|         Language().from_bytes(nlp.to_bytes(), meta=False)
 |