spaCy/spacy/tests/vectors/test_vectors.py
Suraj Rajan 1cdbb7c97c [2032] - Changed python set to cpp stl set (#2170)
Changed python set to cpp stl set #2032 

## Description

Changed python set to cpp stl set. CPP stl set works better due to the logarithmic run time of its methods. Finding minimum in the cpp set is done in constant time as opposed to the worst case linear runtime of python set. Operations such as find,count,insert,delete are also done in either constant and logarithmic time thus making cpp set a better option to manage vectors.
Reference : http://www.cplusplus.com/reference/set/set/

### Types of change
Enhancement for `Vectors` for faster initialising of word vectors(fasttext)
2018-03-31 13:28:25 +02:00

203 lines
6.3 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
from ...vectors import Vectors
from ...tokenizer import Tokenizer
from ...strings import hash_string
from ..util import add_vecs_to_vocab, get_doc
import numpy
import pytest
@pytest.fixture
def strings():
return ["apple", "orange"]
@pytest.fixture
def vectors():
return [
("apple", [1, 2, 3]),
("orange", [-1, -2, -3]),
('and', [-1, -1, -1]),
('juice', [5, 5, 10]),
('pie', [7, 6.3, 8.9])]
@pytest.fixture
def data():
return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype='f')
@pytest.fixture
def resize_data():
return numpy.asarray([[0.0, 1.0], [2.0, 3.0]], dtype='f')
@pytest.fixture()
def vocab(en_vocab, vectors):
add_vecs_to_vocab(en_vocab, vectors)
return en_vocab
def test_init_vectors_with_resize_shape(strings,resize_data):
v = Vectors(shape=(len(strings), 3))
v.resize(shape=resize_data.shape)
assert v.shape == resize_data.shape
assert v.shape != (len(strings), 3)
def test_init_vectors_with_resize_data(data,resize_data):
v = Vectors(data=data)
v.resize(shape=resize_data.shape)
assert v.shape == resize_data.shape
assert v.shape != data.shape
def test_get_vector_resize(strings, data,resize_data):
v = Vectors(data=data)
v.resize(shape=resize_data.shape)
strings = [hash_string(s) for s in strings]
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(resize_data[0])
assert list(v[strings[0]]) != list(resize_data[1])
assert list(v[strings[1]]) != list(resize_data[0])
assert list(v[strings[1]]) == list(resize_data[1])
def test_init_vectors_with_data(strings, data):
v = Vectors(data=data)
assert v.shape == data.shape
def test_init_vectors_with_shape(strings):
v = Vectors(shape=(len(strings), 3))
assert v.shape == (len(strings), 3)
def test_get_vector(strings, data):
v = Vectors(data=data)
strings = [hash_string(s) for s in strings]
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(data[0])
assert list(v[strings[0]]) != list(data[1])
assert list(v[strings[1]]) != list(data[0])
def test_set_vector(strings, data):
orig = data.copy()
v = Vectors(data=data)
strings = [hash_string(s) for s in strings]
for i, string in enumerate(strings):
v.add(string, row=i)
assert list(v[strings[0]]) == list(orig[0])
assert list(v[strings[0]]) != list(orig[1])
v[strings[0]] = data[1]
assert list(v[strings[0]]) == list(orig[1])
assert list(v[strings[0]]) != list(orig[0])
@pytest.fixture()
def tokenizer_v(vocab):
return Tokenizer(vocab, {}, None, None, None)
@pytest.mark.parametrize('text', ["apple and orange"])
def test_vectors_token_vector(tokenizer_v, vectors, text):
doc = tokenizer_v(text)
assert vectors[0] == (doc[0].text, list(doc[0].vector))
assert vectors[1] == (doc[2].text, list(doc[2].vector))
@pytest.mark.parametrize('text', ["apple", "orange"])
def test_vectors_lexeme_vector(vocab, text):
lex = vocab[text]
assert list(lex.vector)
assert lex.vector_norm
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
def test_vectors_doc_vector(vocab, text):
doc = get_doc(vocab, text)
assert list(doc.vector)
assert doc.vector_norm
@pytest.mark.parametrize('text', [["apple", "and", "orange"]])
def test_vectors_span_vector(vocab, text):
span = get_doc(vocab, text)[0:2]
assert list(span.vector)
assert span.vector_norm
@pytest.mark.parametrize('text', ["apple orange"])
def test_vectors_token_token_similarity(tokenizer_v, text):
doc = tokenizer_v(text)
assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0])
assert -1. < doc[0].similarity(doc[1]) < 1.0
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2):
token = tokenizer_v(text1)
lex = vocab[text2]
assert token.similarity(lex) == lex.similarity(token)
assert -1. < token.similarity(lex) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_token_span_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0])
assert -1. < doc[0].similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_token_doc_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0].similarity(doc) == doc.similarity(doc[0])
assert -1. < doc[0].similarity(doc) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_lexeme_span_similarity(vocab, text):
doc = get_doc(vocab, text)
lex = vocab[text[0]]
assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex)
assert -1. < doc.similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize('text1,text2', [("apple", "orange")])
def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2):
lex1 = vocab[text1]
lex2 = vocab[text2]
assert lex1.similarity(lex2) == lex2.similarity(lex1)
assert -1. < lex1.similarity(lex2) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_lexeme_doc_similarity(vocab, text):
doc = get_doc(vocab, text)
lex = vocab[text[0]]
assert lex.similarity(doc) == doc.similarity(lex)
assert -1. < lex.similarity(doc) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_span_span_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2])
assert -1. < doc[0:2].similarity(doc[1:3]) < 1.0
@pytest.mark.parametrize('text', [["apple", "orange", "juice"]])
def test_vectors_span_doc_similarity(vocab, text):
doc = get_doc(vocab, text)
assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2])
assert -1. < doc[0:2].similarity(doc) < 1.0
@pytest.mark.parametrize('text1,text2', [
(["apple", "and", "apple", "pie"], ["orange", "juice"])])
def test_vectors_doc_doc_similarity(vocab, text1, text2):
doc1 = get_doc(vocab, text1)
doc2 = get_doc(vocab, text2)
assert doc1.similarity(doc2) == doc2.similarity(doc1)
assert -1. < doc1.similarity(doc2) < 1.0