mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
03fefa37e2
* Add overwrite settings for more components For pipeline components where it's relevant and not already implemented, add an explicit `overwrite` setting that controls whether `set_annotations` overwrites existing annotation. For the `morphologizer`, add an additional setting `extend`, which controls whether the existing features are preserved. * +overwrite, +extend: overwrite values of existing features, add any new features * +overwrite, -extend: overwrite completely, removing any existing features * -overwrite, +extend: keep values of existing features, add any new features * -overwrite, -extend: do not modify the existing value if set In all cases an unset value will be set by `set_annotations`. Preserve current overwrite defaults: * True: morphologizer, entity linker * False: tagger, sentencizer, senter * Add backwards compat overwrite settings * Put empty line back Removed by accident in last commit * Set backwards-compatible defaults in __init__ Because the `TrainablePipe` serialization methods update `cfg`, there's no straightforward way to detect whether models serialized with a previous version are missing the overwrite settings. It would be possible in the sentencizer due to its separate serialization methods, however to keep the changes parallel, this also sets the default in `__init__`. * Remove traces Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
185 lines
6.3 KiB
Cython
185 lines
6.3 KiB
Cython
# cython: infer_types=True, profile=True, binding=True
|
|
from itertools import islice
|
|
from typing import Optional, Callable
|
|
|
|
import srsly
|
|
from thinc.api import Model, SequenceCategoricalCrossentropy, Config
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from .tagger import Tagger
|
|
from ..language import Language
|
|
from ..errors import Errors
|
|
from ..scorer import Scorer
|
|
from ..training import validate_examples, validate_get_examples
|
|
from ..util import registry
|
|
from .. import util
|
|
|
|
# See #9050
|
|
BACKWARD_OVERWRITE = False
|
|
|
|
default_model_config = """
|
|
[model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.HashEmbedCNN.v2"
|
|
pretrained_vectors = null
|
|
width = 12
|
|
depth = 1
|
|
embed_size = 2000
|
|
window_size = 1
|
|
maxout_pieces = 2
|
|
subword_features = true
|
|
"""
|
|
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
@Language.factory(
|
|
"senter",
|
|
assigns=["token.is_sent_start"],
|
|
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
)
|
|
def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
|
|
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
|
|
|
|
|
|
def senter_score(examples, **kwargs):
|
|
def has_sents(doc):
|
|
return doc.has_annotation("SENT_START")
|
|
|
|
results = Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs)
|
|
del results["sents_per_type"]
|
|
return results
|
|
|
|
|
|
@registry.scorers("spacy.senter_scorer.v1")
|
|
def make_senter_scorer():
|
|
return senter_score
|
|
|
|
|
|
class SentenceRecognizer(Tagger):
|
|
"""Pipeline component for sentence segmentation.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer
|
|
"""
|
|
def __init__(
|
|
self,
|
|
vocab,
|
|
model,
|
|
name="senter",
|
|
*,
|
|
overwrite=BACKWARD_OVERWRITE,
|
|
scorer=senter_score,
|
|
):
|
|
"""Initialize a sentence recognizer.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_spans for the attribute "sents".
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self._rehearsal_model = None
|
|
self.cfg = {"overwrite": overwrite}
|
|
self.scorer = scorer
|
|
|
|
@property
|
|
def labels(self):
|
|
"""RETURNS (Tuple[str]): The labels."""
|
|
# labels are numbered by index internally, so this matches GoldParse
|
|
# and Example where the sentence-initial tag is 1 and other positions
|
|
# are 0
|
|
return tuple(["I", "S"])
|
|
|
|
@property
|
|
def label_data(self):
|
|
return None
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
"""Modify a batch of documents, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#set_annotations
|
|
"""
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
cdef Doc doc
|
|
cdef bint overwrite = self.cfg["overwrite"]
|
|
for i, doc in enumerate(docs):
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
if hasattr(doc_tag_ids, "get"):
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
if doc.c[j].sent_start == 0 or overwrite:
|
|
if tag_id == 1:
|
|
doc.c[j].sent_start = 1
|
|
else:
|
|
doc.c[j].sent_start = -1
|
|
|
|
def get_loss(self, examples, scores):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#get_loss
|
|
"""
|
|
validate_examples(examples, "SentenceRecognizer.get_loss")
|
|
labels = self.labels
|
|
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
|
|
truths = []
|
|
for eg in examples:
|
|
eg_truth = []
|
|
for x in eg.get_aligned("SENT_START"):
|
|
if x is None:
|
|
eg_truth.append(None)
|
|
elif x == 1:
|
|
eg_truth.append(labels[1])
|
|
else:
|
|
# anything other than 1: 0, -1, -1 as uint64
|
|
eg_truth.append(labels[0])
|
|
truths.append(eg_truth)
|
|
d_scores, loss = loss_func(scores, truths)
|
|
if self.model.ops.xp.isnan(loss):
|
|
raise ValueError(Errors.E910.format(name=self.name))
|
|
return float(loss), d_scores
|
|
|
|
def initialize(self, get_examples, *, nlp=None):
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://spacy.io/api/sentencerecognizer#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "SentenceRecognizer.initialize")
|
|
util.check_lexeme_norms(self.vocab, "senter")
|
|
doc_sample = []
|
|
label_sample = []
|
|
assert self.labels, Errors.E924.format(name=self.name)
|
|
for example in islice(get_examples(), 10):
|
|
doc_sample.append(example.x)
|
|
gold_tags = example.get_aligned("SENT_START")
|
|
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
|
|
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
|
|
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
|
|
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=doc_sample, Y=label_sample)
|
|
|
|
def add_label(self, label, values=None):
|
|
raise NotImplementedError
|