mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
c053f158c5
* Add support for fasttext-bloom hash-only vectors Overview: * Extend `Vectors` to have two modes: `default` and `ngram` * `default` is the default mode and equivalent to the current `Vectors` * `ngram` supports the hash-only ngram tables from `fasttext-bloom` * Extend `spacy.StaticVectors.v2` to handle both modes with no changes for `default` vectors * Extend `spacy init vectors` to support ngram tables The `ngram` mode **only** supports vector tables produced by this fork of fastText, which adds an option to represent all vectors using only the ngram buckets table and which uses the exact same ngram generation algorithm and hash function (`MurmurHash3_x64_128`). `fasttext-bloom` produces an additional `.hashvec` table, which can be loaded by `spacy init vectors --fasttext-bloom-vectors`. https://github.com/adrianeboyd/fastText/tree/feature/bloom Implementation details: * `Vectors` now includes the `StringStore` as `Vectors.strings` so that the API can stay consistent for both `default` (which can look up from `str` or `int`) and `ngram` (which requires `str` to calculate the ngrams). * In ngram mode `Vectors` uses a default `Vectors` object as a cache since the ngram vectors lookups are relatively expensive. * The default cache size is the same size as the provided ngram vector table. * Once the cache is full, no more entries are added. The user is responsible for managing the cache in cases where the initial documents are not representative of the texts. * The cache can be resized by setting `Vectors.ngram_cache_size` or cleared with `vectors._ngram_cache.clear()`. * The API ends up a bit split between methods for `default` and for `ngram`, so functions that only make sense for `default` or `ngram` include warnings with custom messages suggesting alternatives where possible. * `Vocab.vectors` becomes a property so that the string stores can be synced when assigning vectors to a vocab. * `Vectors` serializes its own config settings as `vectors.cfg`. * The `Vectors` serialization methods have added support for `exclude` so that the `Vocab` can exclude the `Vectors` strings while serializing. Removed: * The `minn` and `maxn` options and related code from `Vocab.get_vector`, which does not work in a meaningful way for default vector tables. * The unused `GlobalRegistry` in `Vectors`. * Refactor to use reduce_mean Refactor to use reduce_mean and remove the ngram vectors cache. * Rename to floret * Rename to floret in error messages * Use --vectors-mode in CLI, vector init * Fix vectors mode in init * Remove unused var * Minor API and docstrings adjustments * Rename `--vectors-mode` to `--mode` in `init vectors` CLI * Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support both modes. * Minor updates to Vectors docstrings. * Update API docs for Vectors and init vectors CLI * Update types for StaticVectors
552 lines
22 KiB
Cython
552 lines
22 KiB
Cython
# cython: profile=True
|
|
from libc.string cimport memcpy
|
|
|
|
import srsly
|
|
from thinc.api import get_array_module, get_current_ops
|
|
import functools
|
|
|
|
from .lexeme cimport EMPTY_LEXEME, OOV_RANK
|
|
from .lexeme cimport Lexeme
|
|
from .typedefs cimport attr_t
|
|
from .tokens.token cimport Token
|
|
from .attrs cimport LANG, ORTH
|
|
|
|
from .compat import copy_reg
|
|
from .errors import Errors
|
|
from .attrs import intify_attrs, NORM, IS_STOP
|
|
from .vectors import Vectors, Mode as VectorsMode
|
|
from .util import registry
|
|
from .lookups import Lookups
|
|
from . import util
|
|
from .lang.norm_exceptions import BASE_NORMS
|
|
from .lang.lex_attrs import LEX_ATTRS, is_stop, get_lang
|
|
|
|
|
|
def create_vocab(lang, defaults, vectors_name=None):
|
|
# If the spacy-lookups-data package is installed, we pre-populate the lookups
|
|
# with lexeme data, if available
|
|
lex_attrs = {**LEX_ATTRS, **defaults.lex_attr_getters}
|
|
# This is messy, but it's the minimal working fix to Issue #639.
|
|
lex_attrs[IS_STOP] = functools.partial(is_stop, stops=defaults.stop_words)
|
|
# Ensure that getter can be pickled
|
|
lex_attrs[LANG] = functools.partial(get_lang, lang=lang)
|
|
lex_attrs[NORM] = util.add_lookups(
|
|
lex_attrs.get(NORM, LEX_ATTRS[NORM]),
|
|
BASE_NORMS,
|
|
)
|
|
return Vocab(
|
|
lex_attr_getters=lex_attrs,
|
|
writing_system=defaults.writing_system,
|
|
get_noun_chunks=defaults.syntax_iterators.get("noun_chunks"),
|
|
vectors_name=vectors_name,
|
|
)
|
|
|
|
|
|
cdef class Vocab:
|
|
"""A look-up table that allows you to access `Lexeme` objects. The `Vocab`
|
|
instance also provides access to the `StringStore`, and owns underlying
|
|
C-data that is shared between `Doc` objects.
|
|
|
|
DOCS: https://spacy.io/api/vocab
|
|
"""
|
|
def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
|
|
oov_prob=-20., vectors_name=None, writing_system={},
|
|
get_noun_chunks=None, **deprecated_kwargs):
|
|
"""Create the vocabulary.
|
|
|
|
lex_attr_getters (dict): A dictionary mapping attribute IDs to
|
|
functions to compute them. Defaults to `None`.
|
|
strings (StringStore): StringStore that maps strings to integers, and
|
|
vice versa.
|
|
lookups (Lookups): Container for large lookup tables and dictionaries.
|
|
oov_prob (float): Default OOV probability.
|
|
vectors_name (str): Optional name to identify the vectors table.
|
|
get_noun_chunks (Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]):
|
|
A function that yields base noun phrases used for Doc.noun_chunks.
|
|
"""
|
|
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
|
if lookups in (None, True, False):
|
|
lookups = Lookups()
|
|
self.cfg = {'oov_prob': oov_prob}
|
|
self.mem = Pool()
|
|
self._by_orth = PreshMap()
|
|
self.strings = StringStore()
|
|
self.length = 0
|
|
if strings:
|
|
for string in strings:
|
|
_ = self[string]
|
|
self.lex_attr_getters = lex_attr_getters
|
|
self.morphology = Morphology(self.strings)
|
|
self.vectors = Vectors(strings=self.strings, name=vectors_name)
|
|
self.lookups = lookups
|
|
self.writing_system = writing_system
|
|
self.get_noun_chunks = get_noun_chunks
|
|
|
|
property vectors:
|
|
def __get__(self):
|
|
return self._vectors
|
|
|
|
def __set__(self, vectors):
|
|
for s in vectors.strings:
|
|
self.strings.add(s)
|
|
self._vectors = vectors
|
|
self._vectors.strings = self.strings
|
|
|
|
@property
|
|
def lang(self):
|
|
langfunc = None
|
|
if self.lex_attr_getters:
|
|
langfunc = self.lex_attr_getters.get(LANG, None)
|
|
return langfunc("_") if langfunc else ""
|
|
|
|
def __len__(self):
|
|
"""The current number of lexemes stored.
|
|
|
|
RETURNS (int): The current number of lexemes stored.
|
|
"""
|
|
return self.length
|
|
|
|
def add_flag(self, flag_getter, int flag_id=-1):
|
|
"""Set a new boolean flag to words in the vocabulary.
|
|
|
|
The flag_getter function will be called over the words currently in the
|
|
vocab, and then applied to new words as they occur. You'll then be able
|
|
to access the flag value on each token using token.check_flag(flag_id).
|
|
See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`,
|
|
`Token.check_flag`.
|
|
|
|
flag_getter (callable): A function `f(str) -> bool`, to get the
|
|
flag value.
|
|
flag_id (int): An integer between 1 and 63 (inclusive), specifying
|
|
the bit at which the flag will be stored. If -1, the lowest
|
|
available bit will be chosen.
|
|
RETURNS (int): The integer ID by which the flag value can be checked.
|
|
|
|
DOCS: https://spacy.io/api/vocab#add_flag
|
|
"""
|
|
if flag_id == -1:
|
|
for bit in range(1, 64):
|
|
if bit not in self.lex_attr_getters:
|
|
flag_id = bit
|
|
break
|
|
else:
|
|
raise ValueError(Errors.E062)
|
|
elif flag_id >= 64 or flag_id < 1:
|
|
raise ValueError(Errors.E063.format(value=flag_id))
|
|
for lex in self:
|
|
lex.set_flag(flag_id, flag_getter(lex.orth_))
|
|
self.lex_attr_getters[flag_id] = flag_getter
|
|
return flag_id
|
|
|
|
cdef const LexemeC* get(self, Pool mem, str string) except NULL:
|
|
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
|
`Lexeme` if necessary using memory acquired from the given pool. If the
|
|
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
|
"""
|
|
if string == "":
|
|
return &EMPTY_LEXEME
|
|
cdef LexemeC* lex
|
|
cdef hash_t key = self.strings[string]
|
|
lex = <LexemeC*>self._by_orth.get(key)
|
|
cdef size_t addr
|
|
if lex != NULL:
|
|
assert lex.orth in self.strings
|
|
if lex.orth != key:
|
|
raise KeyError(Errors.E064.format(string=lex.orth,
|
|
orth=key, orth_id=string))
|
|
return lex
|
|
else:
|
|
return self._new_lexeme(mem, string)
|
|
|
|
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
|
|
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
|
`Lexeme` if necessary using memory acquired from the given pool. If the
|
|
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
|
"""
|
|
if orth == 0:
|
|
return &EMPTY_LEXEME
|
|
cdef LexemeC* lex
|
|
lex = <LexemeC*>self._by_orth.get(orth)
|
|
if lex != NULL:
|
|
return lex
|
|
else:
|
|
return self._new_lexeme(mem, self.strings[orth])
|
|
|
|
cdef const LexemeC* _new_lexeme(self, Pool mem, str string) except NULL:
|
|
# I think this heuristic is bad, and the Vocab should always
|
|
# own the lexemes. It avoids weird bugs this way, as it's how the thing
|
|
# was originally supposed to work. The best solution to the growing
|
|
# memory use is to periodically reset the vocab, which is an action
|
|
# that should be up to the user to do (so we don't need to keep track
|
|
# of the doc ownership).
|
|
# TODO: Change the C API so that the mem isn't passed in here.
|
|
mem = self.mem
|
|
#if len(string) < 3 or self.length < 10000:
|
|
# mem = self.mem
|
|
cdef bint is_oov = mem is not self.mem
|
|
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
|
|
lex.orth = self.strings.add(string)
|
|
lex.length = len(string)
|
|
if self.vectors is not None:
|
|
lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
|
|
else:
|
|
lex.id = OOV_RANK
|
|
if self.lex_attr_getters is not None:
|
|
for attr, func in self.lex_attr_getters.items():
|
|
value = func(string)
|
|
if isinstance(value, str):
|
|
value = self.strings.add(value)
|
|
if value is not None:
|
|
Lexeme.set_struct_attr(lex, attr, value)
|
|
if not is_oov:
|
|
self._add_lex_to_vocab(lex.orth, lex)
|
|
if lex == NULL:
|
|
raise ValueError(Errors.E085.format(string=string))
|
|
return lex
|
|
|
|
cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1:
|
|
self._by_orth.set(lex.orth, <void*>lex)
|
|
self.length += 1
|
|
|
|
def __contains__(self, key):
|
|
"""Check whether the string or int key has an entry in the vocabulary.
|
|
|
|
string (str): The ID string.
|
|
RETURNS (bool) Whether the string has an entry in the vocabulary.
|
|
|
|
DOCS: https://spacy.io/api/vocab#contains
|
|
"""
|
|
cdef hash_t int_key
|
|
if isinstance(key, bytes):
|
|
int_key = self.strings[key.decode("utf8")]
|
|
elif isinstance(key, str):
|
|
int_key = self.strings[key]
|
|
else:
|
|
int_key = key
|
|
lex = self._by_orth.get(int_key)
|
|
return lex is not NULL
|
|
|
|
def __iter__(self):
|
|
"""Iterate over the lexemes in the vocabulary.
|
|
|
|
YIELDS (Lexeme): An entry in the vocabulary.
|
|
|
|
DOCS: https://spacy.io/api/vocab#iter
|
|
"""
|
|
cdef attr_t key
|
|
cdef size_t addr
|
|
for key, addr in self._by_orth.items():
|
|
lex = Lexeme(self, key)
|
|
yield lex
|
|
|
|
def __getitem__(self, id_or_string):
|
|
"""Retrieve a lexeme, given an int ID or a unicode string. If a
|
|
previously unseen unicode string is given, a new lexeme is created and
|
|
stored.
|
|
|
|
id_or_string (int or str): The integer ID of a word, or its unicode
|
|
string. If `int >= Lexicon.size`, `IndexError` is raised. If
|
|
`id_or_string` is neither an int nor a unicode string, `ValueError`
|
|
is raised.
|
|
RETURNS (Lexeme): The lexeme indicated by the given ID.
|
|
|
|
EXAMPLE:
|
|
>>> apple = nlp.vocab.strings["apple"]
|
|
>>> assert nlp.vocab[apple] == nlp.vocab[u"apple"]
|
|
|
|
DOCS: https://spacy.io/api/vocab#getitem
|
|
"""
|
|
cdef attr_t orth
|
|
if isinstance(id_or_string, str):
|
|
orth = self.strings.add(id_or_string)
|
|
else:
|
|
orth = id_or_string
|
|
return Lexeme(self, orth)
|
|
|
|
cdef const TokenC* make_fused_token(self, substrings) except NULL:
|
|
cdef int i
|
|
tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
|
|
for i, props in enumerate(substrings):
|
|
props = intify_attrs(props, strings_map=self.strings,
|
|
_do_deprecated=True)
|
|
token = &tokens[i]
|
|
# Set the special tokens up to have arbitrary attributes
|
|
lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
|
|
token.lex = lex
|
|
for attr_id, value in props.items():
|
|
Token.set_struct_attr(token, attr_id, value)
|
|
# NORM is the only one that overlaps between the two
|
|
# (which is maybe not great?)
|
|
if attr_id != NORM:
|
|
Lexeme.set_struct_attr(lex, attr_id, value)
|
|
return tokens
|
|
|
|
@property
|
|
def vectors_length(self):
|
|
return self.vectors.data.shape[1]
|
|
|
|
def reset_vectors(self, *, width=None, shape=None):
|
|
"""Drop the current vector table. Because all vectors must be the same
|
|
width, you have to call this to change the size of the vectors.
|
|
"""
|
|
if width is not None and shape is not None:
|
|
raise ValueError(Errors.E065.format(width=width, shape=shape))
|
|
elif shape is not None:
|
|
self.vectors = Vectors(strings=self.strings, shape=shape)
|
|
else:
|
|
width = width if width is not None else self.vectors.data.shape[1]
|
|
self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width))
|
|
|
|
def prune_vectors(self, nr_row, batch_size=1024):
|
|
"""Reduce the current vector table to `nr_row` unique entries. Words
|
|
mapped to the discarded vectors will be remapped to the closest vector
|
|
among those remaining.
|
|
|
|
For example, suppose the original table had vectors for the words:
|
|
['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to
|
|
two rows, we would discard the vectors for 'feline' and 'reclined'.
|
|
These words would then be remapped to the closest remaining vector
|
|
-- so "feline" would have the same vector as "cat", and "reclined"
|
|
would have the same vector as "sat".
|
|
|
|
The similarities are judged by cosine. The original vectors may
|
|
be large, so the cosines are calculated in minibatches, to reduce
|
|
memory usage.
|
|
|
|
nr_row (int): The number of rows to keep in the vector table.
|
|
batch_size (int): Batch of vectors for calculating the similarities.
|
|
Larger batch sizes might be faster, while temporarily requiring
|
|
more memory.
|
|
RETURNS (dict): A dictionary keyed by removed words mapped to
|
|
`(string, score)` tuples, where `string` is the entry the removed
|
|
word was mapped to, and `score` the similarity score between the
|
|
two words.
|
|
|
|
DOCS: https://spacy.io/api/vocab#prune_vectors
|
|
"""
|
|
if self.vectors.mode != VectorsMode.default:
|
|
raise ValueError(Errors.E866)
|
|
ops = get_current_ops()
|
|
xp = get_array_module(self.vectors.data)
|
|
# Make sure all vectors are in the vocab
|
|
for orth in self.vectors:
|
|
self[orth]
|
|
# Make prob negative so it sorts by rank ascending
|
|
# (key2row contains the rank)
|
|
priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth)
|
|
for lex in self if lex.orth in self.vectors.key2row]
|
|
priority.sort()
|
|
indices = xp.asarray([i for (prob, i, key) in priority], dtype="uint64")
|
|
keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64")
|
|
keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]])
|
|
toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]])
|
|
self.vectors = Vectors(strings=self.strings, data=keep, keys=keys[:nr_row], name=self.vectors.name)
|
|
syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size)
|
|
syn_keys = ops.to_numpy(syn_keys)
|
|
remap = {}
|
|
for i, key in enumerate(ops.to_numpy(keys[nr_row:])):
|
|
self.vectors.add(key, row=syn_rows[i][0])
|
|
word = self.strings[key]
|
|
synonym = self.strings[syn_keys[i][0]]
|
|
score = scores[i][0]
|
|
remap[word] = (synonym, score)
|
|
return remap
|
|
|
|
def get_vector(self, orth):
|
|
"""Retrieve a vector for a word in the vocabulary. Words can be looked
|
|
up by string or int ID. If no vectors data is loaded, ValueError is
|
|
raised.
|
|
|
|
orth (int / unicode): The hash value of a word, or its unicode string.
|
|
RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size
|
|
and shape determined by the `vocab.vectors` instance. Usually, a
|
|
numpy ndarray of shape (300,) and dtype float32.
|
|
|
|
DOCS: https://spacy.io/api/vocab#get_vector
|
|
"""
|
|
if isinstance(orth, str):
|
|
orth = self.strings.add(orth)
|
|
if self.has_vector(orth):
|
|
return self.vectors[orth]
|
|
xp = get_array_module(self.vectors.data)
|
|
vectors = xp.zeros((self.vectors_length,), dtype="f")
|
|
return vectors
|
|
|
|
def set_vector(self, orth, vector):
|
|
"""Set a vector for a word in the vocabulary. Words can be referenced
|
|
by string or int ID.
|
|
|
|
orth (int / str): The word.
|
|
vector (numpy.ndarray or cupy.nadarry[ndim=1, dtype='float32']): The vector to set.
|
|
|
|
DOCS: https://spacy.io/api/vocab#set_vector
|
|
"""
|
|
if isinstance(orth, str):
|
|
orth = self.strings.add(orth)
|
|
if self.vectors.is_full and orth not in self.vectors:
|
|
new_rows = max(100, int(self.vectors.shape[0]*1.3))
|
|
if self.vectors.shape[1] == 0:
|
|
width = vector.size
|
|
else:
|
|
width = self.vectors.shape[1]
|
|
self.vectors.resize((new_rows, width))
|
|
lex = self[orth] # Add word to vocab if necessary
|
|
row = self.vectors.add(orth, vector=vector)
|
|
if row >= 0:
|
|
lex.rank = row
|
|
|
|
def has_vector(self, orth):
|
|
"""Check whether a word has a vector. Returns False if no vectors have
|
|
been loaded. Words can be looked up by string or int ID.
|
|
|
|
orth (int / str): The word.
|
|
RETURNS (bool): Whether the word has a vector.
|
|
|
|
DOCS: https://spacy.io/api/vocab#has_vector
|
|
"""
|
|
if isinstance(orth, str):
|
|
orth = self.strings.add(orth)
|
|
return orth in self.vectors
|
|
|
|
property lookups:
|
|
def __get__(self):
|
|
return self._lookups
|
|
|
|
def __set__(self, lookups):
|
|
self._lookups = lookups
|
|
if lookups.has_table("lexeme_norm"):
|
|
self.lex_attr_getters[NORM] = util.add_lookups(
|
|
self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]),
|
|
self.lookups.get_table("lexeme_norm"),
|
|
)
|
|
|
|
|
|
def to_disk(self, path, *, exclude=tuple()):
|
|
"""Save the current state to a directory.
|
|
|
|
path (str or Path): A path to a directory, which will be created if
|
|
it doesn't exist.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
|
|
DOCS: https://spacy.io/api/vocab#to_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
if not path.exists():
|
|
path.mkdir()
|
|
setters = ["strings", "vectors"]
|
|
if "strings" not in exclude:
|
|
self.strings.to_disk(path / "strings.json")
|
|
if "vectors" not in "exclude":
|
|
self.vectors.to_disk(path, exclude=["strings"])
|
|
if "lookups" not in "exclude":
|
|
self.lookups.to_disk(path)
|
|
|
|
def from_disk(self, path, *, exclude=tuple()):
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
returns it.
|
|
|
|
path (str or Path): A path to a directory.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (Vocab): The modified `Vocab` object.
|
|
|
|
DOCS: https://spacy.io/api/vocab#to_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
getters = ["strings", "vectors"]
|
|
if "strings" not in exclude:
|
|
self.strings.from_disk(path / "strings.json") # TODO: add exclude?
|
|
if "vectors" not in exclude:
|
|
if self.vectors is not None:
|
|
self.vectors.from_disk(path, exclude=["strings"])
|
|
if "lookups" not in exclude:
|
|
self.lookups.from_disk(path)
|
|
if "lexeme_norm" in self.lookups:
|
|
self.lex_attr_getters[NORM] = util.add_lookups(
|
|
self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
|
|
)
|
|
self.length = 0
|
|
self._by_orth = PreshMap()
|
|
return self
|
|
|
|
def to_bytes(self, *, exclude=tuple()):
|
|
"""Serialize the current state to a binary string.
|
|
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized form of the `Vocab` object.
|
|
|
|
DOCS: https://spacy.io/api/vocab#to_bytes
|
|
"""
|
|
def deserialize_vectors():
|
|
if self.vectors is None:
|
|
return None
|
|
else:
|
|
return self.vectors.to_bytes(exclude=["strings"])
|
|
|
|
getters = {
|
|
"strings": lambda: self.strings.to_bytes(),
|
|
"vectors": deserialize_vectors,
|
|
"lookups": lambda: self.lookups.to_bytes(),
|
|
}
|
|
return util.to_bytes(getters, exclude)
|
|
|
|
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
"""Load state from a binary string.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (Vocab): The `Vocab` object.
|
|
|
|
DOCS: https://spacy.io/api/vocab#from_bytes
|
|
"""
|
|
def serialize_vectors(b):
|
|
if self.vectors is None:
|
|
return None
|
|
else:
|
|
return self.vectors.from_bytes(b, exclude=["strings"])
|
|
|
|
setters = {
|
|
"strings": lambda b: self.strings.from_bytes(b),
|
|
"vectors": lambda b: serialize_vectors(b),
|
|
"lookups": lambda b: self.lookups.from_bytes(b),
|
|
}
|
|
util.from_bytes(bytes_data, setters, exclude)
|
|
if "lexeme_norm" in self.lookups:
|
|
self.lex_attr_getters[NORM] = util.add_lookups(
|
|
self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
|
|
)
|
|
self.length = 0
|
|
self._by_orth = PreshMap()
|
|
return self
|
|
|
|
def _reset_cache(self, keys, strings):
|
|
# I'm not sure this made sense. Disable it for now.
|
|
raise NotImplementedError
|
|
|
|
|
|
def pickle_vocab(vocab):
|
|
sstore = vocab.strings
|
|
vectors = vocab.vectors
|
|
morph = vocab.morphology
|
|
_unused_object = vocab._unused_object
|
|
lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters)
|
|
lookups = vocab.lookups
|
|
get_noun_chunks = vocab.get_noun_chunks
|
|
return (unpickle_vocab,
|
|
(sstore, vectors, morph, _unused_object, lex_attr_getters, lookups, get_noun_chunks))
|
|
|
|
|
|
def unpickle_vocab(sstore, vectors, morphology, _unused_object,
|
|
lex_attr_getters, lookups, get_noun_chunks):
|
|
cdef Vocab vocab = Vocab()
|
|
vocab.vectors = vectors
|
|
vocab.strings = sstore
|
|
vocab.morphology = morphology
|
|
vocab._unused_object = _unused_object
|
|
vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters)
|
|
vocab.lookups = lookups
|
|
vocab.get_noun_chunks = get_noun_chunks
|
|
return vocab
|
|
|
|
|
|
copy_reg.pickle(Vocab, pickle_vocab, unpickle_vocab)
|