mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 12:06:25 +03:00
1f23c615d7
* Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups. * Fix tests. Add distinction w.r.t. batch size. * Remove redundant and add new comments. * Adjust comments. Fix variable naming in EL prediction. * Fix mypy errors. * Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues. * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Add error messages to NotImplementedErrors. Remove redundant comment. * Fix imports. * Remove redundant comments. * Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase. * Fix tests. * Update spacy/errors.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Move KB into subdirectory. * Adjust imports after KB move to dedicated subdirectory. * Fix config imports. * Move Candidate + retrieval functions to separate module. Fix other, small issues. * Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions. * Update spacy/kb/kb_in_memory.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix typing. * Change typing of mentions to be Span instead of Union[Span, str]. * Update docs. * Update EntityLinker and _architecture docs. * Update website/docs/api/entitylinker.md Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> * Adjust message for E1046. * Re-add section for Candidate in kb.md, add reference to dedicated page. * Update docs and docstrings. * Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs. * Update spacy/kb/candidate.pyx * Update spacy/kb/kb_in_memory.pyx * Update spacy/pipeline/legacy/entity_linker.py * Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py. Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
661 lines
26 KiB
Cython
661 lines
26 KiB
Cython
# cython: infer_types=True, profile=True
|
|
from typing import Iterable, Callable, Dict, Any, Union
|
|
|
|
import srsly
|
|
from preshed.maps cimport PreshMap
|
|
from cpython.exc cimport PyErr_SetFromErrno
|
|
from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek
|
|
from libc.stdint cimport int32_t, int64_t
|
|
from libcpp.vector cimport vector
|
|
|
|
from pathlib import Path
|
|
import warnings
|
|
|
|
from ..tokens import Span
|
|
from ..typedefs cimport hash_t
|
|
from ..errors import Errors, Warnings
|
|
from .. import util
|
|
from ..util import SimpleFrozenList, ensure_path
|
|
from ..vocab cimport Vocab
|
|
from .kb cimport KnowledgeBase
|
|
from .candidate import Candidate as Candidate
|
|
|
|
|
|
cdef class InMemoryLookupKB(KnowledgeBase):
|
|
"""An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases,
|
|
to support entity linking of named entities to real-world concepts.
|
|
|
|
DOCS: https://spacy.io/api/kb_in_memory
|
|
"""
|
|
|
|
def __init__(self, Vocab vocab, entity_vector_length):
|
|
"""Create an InMemoryLookupKB."""
|
|
super().__init__(vocab, entity_vector_length)
|
|
self._entry_index = PreshMap()
|
|
self._alias_index = PreshMap()
|
|
self._create_empty_vectors(dummy_hash=self.vocab.strings[""])
|
|
|
|
def _initialize_entities(self, int64_t nr_entities):
|
|
self._entry_index = PreshMap(nr_entities + 1)
|
|
self._entries = entry_vec(nr_entities + 1)
|
|
|
|
def _initialize_vectors(self, int64_t nr_entities):
|
|
self._vectors_table = float_matrix(nr_entities + 1)
|
|
|
|
def _initialize_aliases(self, int64_t nr_aliases):
|
|
self._alias_index = PreshMap(nr_aliases + 1)
|
|
self._aliases_table = alias_vec(nr_aliases + 1)
|
|
|
|
def __len__(self):
|
|
return self.get_size_entities()
|
|
|
|
def get_size_entities(self):
|
|
return len(self._entry_index)
|
|
|
|
def get_entity_strings(self):
|
|
return [self.vocab.strings[x] for x in self._entry_index]
|
|
|
|
def get_size_aliases(self):
|
|
return len(self._alias_index)
|
|
|
|
def get_alias_strings(self):
|
|
return [self.vocab.strings[x] for x in self._alias_index]
|
|
|
|
def add_entity(self, str entity, float freq, vector[float] entity_vector):
|
|
"""
|
|
Add an entity to the KB, optionally specifying its log probability based on corpus frequency
|
|
Return the hash of the entity ID/name at the end.
|
|
"""
|
|
cdef hash_t entity_hash = self.vocab.strings.add(entity)
|
|
|
|
# Return if this entity was added before
|
|
if entity_hash in self._entry_index:
|
|
warnings.warn(Warnings.W018.format(entity=entity))
|
|
return
|
|
|
|
# Raise an error if the provided entity vector is not of the correct length
|
|
if len(entity_vector) != self.entity_vector_length:
|
|
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
|
|
|
|
vector_index = self.c_add_vector(entity_vector=entity_vector)
|
|
|
|
new_index = self.c_add_entity(entity_hash=entity_hash,
|
|
freq=freq,
|
|
vector_index=vector_index,
|
|
feats_row=-1) # Features table currently not implemented
|
|
self._entry_index[entity_hash] = new_index
|
|
|
|
return entity_hash
|
|
|
|
cpdef set_entities(self, entity_list, freq_list, vector_list):
|
|
if len(entity_list) != len(freq_list) or len(entity_list) != len(vector_list):
|
|
raise ValueError(Errors.E140)
|
|
|
|
nr_entities = len(set(entity_list))
|
|
self._initialize_entities(nr_entities)
|
|
self._initialize_vectors(nr_entities)
|
|
|
|
i = 0
|
|
cdef KBEntryC entry
|
|
cdef hash_t entity_hash
|
|
while i < len(entity_list):
|
|
# only process this entity if its unique ID hadn't been added before
|
|
entity_hash = self.vocab.strings.add(entity_list[i])
|
|
if entity_hash in self._entry_index:
|
|
warnings.warn(Warnings.W018.format(entity=entity_list[i]))
|
|
|
|
else:
|
|
entity_vector = vector_list[i]
|
|
if len(entity_vector) != self.entity_vector_length:
|
|
raise ValueError(Errors.E141.format(found=len(entity_vector), required=self.entity_vector_length))
|
|
|
|
entry.entity_hash = entity_hash
|
|
entry.freq = freq_list[i]
|
|
|
|
self._vectors_table[i] = entity_vector
|
|
entry.vector_index = i
|
|
|
|
entry.feats_row = -1 # Features table currently not implemented
|
|
|
|
self._entries[i+1] = entry
|
|
self._entry_index[entity_hash] = i+1
|
|
|
|
i += 1
|
|
|
|
def contains_entity(self, str entity):
|
|
cdef hash_t entity_hash = self.vocab.strings.add(entity)
|
|
return entity_hash in self._entry_index
|
|
|
|
def contains_alias(self, str alias):
|
|
cdef hash_t alias_hash = self.vocab.strings.add(alias)
|
|
return alias_hash in self._alias_index
|
|
|
|
def add_alias(self, str alias, entities, probabilities):
|
|
"""
|
|
For a given alias, add its potential entities and prior probabilies to the KB.
|
|
Return the alias_hash at the end
|
|
"""
|
|
if alias is None or len(alias) == 0:
|
|
raise ValueError(Errors.E890.format(alias=alias))
|
|
|
|
previous_alias_nr = self.get_size_aliases()
|
|
# Throw an error if the length of entities and probabilities are not the same
|
|
if not len(entities) == len(probabilities):
|
|
raise ValueError(Errors.E132.format(alias=alias,
|
|
entities_length=len(entities),
|
|
probabilities_length=len(probabilities)))
|
|
|
|
# Throw an error if the probabilities sum up to more than 1 (allow for some rounding errors)
|
|
prob_sum = sum(probabilities)
|
|
if prob_sum > 1.00001:
|
|
raise ValueError(Errors.E133.format(alias=alias, sum=prob_sum))
|
|
|
|
cdef hash_t alias_hash = self.vocab.strings.add(alias)
|
|
|
|
# Check whether this alias was added before
|
|
if alias_hash in self._alias_index:
|
|
warnings.warn(Warnings.W017.format(alias=alias))
|
|
return
|
|
|
|
cdef vector[int64_t] entry_indices
|
|
cdef vector[float] probs
|
|
|
|
for entity, prob in zip(entities, probabilities):
|
|
entity_hash = self.vocab.strings[entity]
|
|
if not entity_hash in self._entry_index:
|
|
raise ValueError(Errors.E134.format(entity=entity))
|
|
|
|
entry_index = <int64_t>self._entry_index.get(entity_hash)
|
|
entry_indices.push_back(int(entry_index))
|
|
probs.push_back(float(prob))
|
|
|
|
new_index = self.c_add_aliases(alias_hash=alias_hash, entry_indices=entry_indices, probs=probs)
|
|
self._alias_index[alias_hash] = new_index
|
|
|
|
if previous_alias_nr + 1 != self.get_size_aliases():
|
|
raise RuntimeError(Errors.E891.format(alias=alias))
|
|
return alias_hash
|
|
|
|
def append_alias(self, str alias, str entity, float prior_prob, ignore_warnings=False):
|
|
"""
|
|
For an alias already existing in the KB, extend its potential entities with one more.
|
|
Throw a warning if either the alias or the entity is unknown,
|
|
or when the combination is already previously recorded.
|
|
Throw an error if this entity+prior prob would exceed the sum of 1.
|
|
For efficiency, it's best to use the method `add_alias` as much as possible instead of this one.
|
|
"""
|
|
# Check if the alias exists in the KB
|
|
cdef hash_t alias_hash = self.vocab.strings[alias]
|
|
if not alias_hash in self._alias_index:
|
|
raise ValueError(Errors.E176.format(alias=alias))
|
|
|
|
# Check if the entity exists in the KB
|
|
cdef hash_t entity_hash = self.vocab.strings[entity]
|
|
if not entity_hash in self._entry_index:
|
|
raise ValueError(Errors.E134.format(entity=entity))
|
|
entry_index = <int64_t>self._entry_index.get(entity_hash)
|
|
|
|
# Throw an error if the prior probabilities (including the new one) sum up to more than 1
|
|
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
|
alias_entry = self._aliases_table[alias_index]
|
|
current_sum = sum([p for p in alias_entry.probs])
|
|
new_sum = current_sum + prior_prob
|
|
|
|
if new_sum > 1.00001:
|
|
raise ValueError(Errors.E133.format(alias=alias, sum=new_sum))
|
|
|
|
entry_indices = alias_entry.entry_indices
|
|
|
|
is_present = False
|
|
for i in range(entry_indices.size()):
|
|
if entry_indices[i] == int(entry_index):
|
|
is_present = True
|
|
|
|
if is_present:
|
|
if not ignore_warnings:
|
|
warnings.warn(Warnings.W024.format(entity=entity, alias=alias))
|
|
else:
|
|
entry_indices.push_back(int(entry_index))
|
|
alias_entry.entry_indices = entry_indices
|
|
|
|
probs = alias_entry.probs
|
|
probs.push_back(float(prior_prob))
|
|
alias_entry.probs = probs
|
|
self._aliases_table[alias_index] = alias_entry
|
|
|
|
def get_candidates(self, mention: Span) -> Iterable[Candidate]:
|
|
return self.get_alias_candidates(mention.text) # type: ignore
|
|
|
|
def get_alias_candidates(self, str alias) -> Iterable[Candidate]:
|
|
"""
|
|
Return candidate entities for an alias. Each candidate defines the entity, the original alias,
|
|
and the prior probability of that alias resolving to that entity.
|
|
If the alias is not known in the KB, and empty list is returned.
|
|
"""
|
|
cdef hash_t alias_hash = self.vocab.strings[alias]
|
|
if not alias_hash in self._alias_index:
|
|
return []
|
|
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
|
alias_entry = self._aliases_table[alias_index]
|
|
|
|
return [Candidate(kb=self,
|
|
entity_hash=self._entries[entry_index].entity_hash,
|
|
entity_freq=self._entries[entry_index].freq,
|
|
entity_vector=self._vectors_table[self._entries[entry_index].vector_index],
|
|
alias_hash=alias_hash,
|
|
prior_prob=prior_prob)
|
|
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs)
|
|
if entry_index != 0]
|
|
|
|
def get_vector(self, str entity):
|
|
cdef hash_t entity_hash = self.vocab.strings[entity]
|
|
|
|
# Return an empty list if this entity is unknown in this KB
|
|
if entity_hash not in self._entry_index:
|
|
return [0] * self.entity_vector_length
|
|
entry_index = self._entry_index[entity_hash]
|
|
|
|
return self._vectors_table[self._entries[entry_index].vector_index]
|
|
|
|
def get_prior_prob(self, str entity, str alias):
|
|
""" Return the prior probability of a given alias being linked to a given entity,
|
|
or return 0.0 when this combination is not known in the knowledge base"""
|
|
cdef hash_t alias_hash = self.vocab.strings[alias]
|
|
cdef hash_t entity_hash = self.vocab.strings[entity]
|
|
|
|
if entity_hash not in self._entry_index or alias_hash not in self._alias_index:
|
|
return 0.0
|
|
|
|
alias_index = <int64_t>self._alias_index.get(alias_hash)
|
|
entry_index = self._entry_index[entity_hash]
|
|
|
|
alias_entry = self._aliases_table[alias_index]
|
|
for (entry_index, prior_prob) in zip(alias_entry.entry_indices, alias_entry.probs):
|
|
if self._entries[entry_index].entity_hash == entity_hash:
|
|
return prior_prob
|
|
|
|
return 0.0
|
|
|
|
def to_bytes(self, **kwargs):
|
|
"""Serialize the current state to a binary string.
|
|
"""
|
|
def serialize_header():
|
|
header = (self.get_size_entities(), self.get_size_aliases(), self.entity_vector_length)
|
|
return srsly.json_dumps(header)
|
|
|
|
def serialize_entries():
|
|
i = 1
|
|
tuples = []
|
|
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
|
|
entry = self._entries[entry_index]
|
|
assert entry.entity_hash == entry_hash
|
|
assert entry_index == i
|
|
tuples.append((entry.entity_hash, entry.freq, entry.vector_index))
|
|
i = i + 1
|
|
return srsly.json_dumps(tuples)
|
|
|
|
def serialize_aliases():
|
|
i = 1
|
|
headers = []
|
|
indices_lists = []
|
|
probs_lists = []
|
|
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
|
|
alias = self._aliases_table[alias_index]
|
|
assert alias_index == i
|
|
candidate_length = len(alias.entry_indices)
|
|
headers.append((alias_hash, candidate_length))
|
|
indices_lists.append(alias.entry_indices)
|
|
probs_lists.append(alias.probs)
|
|
i = i + 1
|
|
headers_dump = srsly.json_dumps(headers)
|
|
indices_dump = srsly.json_dumps(indices_lists)
|
|
probs_dump = srsly.json_dumps(probs_lists)
|
|
return srsly.json_dumps((headers_dump, indices_dump, probs_dump))
|
|
|
|
serializers = {
|
|
"header": serialize_header,
|
|
"entity_vectors": lambda: srsly.json_dumps(self._vectors_table),
|
|
"entries": serialize_entries,
|
|
"aliases": serialize_aliases,
|
|
}
|
|
return util.to_bytes(serializers, [])
|
|
|
|
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
"""Load state from a binary string.
|
|
"""
|
|
def deserialize_header(b):
|
|
header = srsly.json_loads(b)
|
|
nr_entities = header[0]
|
|
nr_aliases = header[1]
|
|
entity_vector_length = header[2]
|
|
self._initialize_entities(nr_entities)
|
|
self._initialize_vectors(nr_entities)
|
|
self._initialize_aliases(nr_aliases)
|
|
self.entity_vector_length = entity_vector_length
|
|
|
|
def deserialize_vectors(b):
|
|
self._vectors_table = srsly.json_loads(b)
|
|
|
|
def deserialize_entries(b):
|
|
cdef KBEntryC entry
|
|
tuples = srsly.json_loads(b)
|
|
i = 1
|
|
for (entity_hash, freq, vector_index) in tuples:
|
|
entry.entity_hash = entity_hash
|
|
entry.freq = freq
|
|
entry.vector_index = vector_index
|
|
entry.feats_row = -1 # Features table currently not implemented
|
|
self._entries[i] = entry
|
|
self._entry_index[entity_hash] = i
|
|
i += 1
|
|
|
|
def deserialize_aliases(b):
|
|
cdef AliasC alias
|
|
i = 1
|
|
all_data = srsly.json_loads(b)
|
|
headers = srsly.json_loads(all_data[0])
|
|
indices = srsly.json_loads(all_data[1])
|
|
probs = srsly.json_loads(all_data[2])
|
|
for header, indices, probs in zip(headers, indices, probs):
|
|
alias_hash, candidate_length = header
|
|
alias.entry_indices = indices
|
|
alias.probs = probs
|
|
self._aliases_table[i] = alias
|
|
self._alias_index[alias_hash] = i
|
|
i += 1
|
|
|
|
setters = {
|
|
"header": deserialize_header,
|
|
"entity_vectors": deserialize_vectors,
|
|
"entries": deserialize_entries,
|
|
"aliases": deserialize_aliases,
|
|
}
|
|
util.from_bytes(bytes_data, setters, exclude)
|
|
return self
|
|
|
|
def to_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()):
|
|
path = ensure_path(path)
|
|
if not path.exists():
|
|
path.mkdir(parents=True)
|
|
if not path.is_dir():
|
|
raise ValueError(Errors.E928.format(loc=path))
|
|
serialize = {}
|
|
serialize["contents"] = lambda p: self.write_contents(p)
|
|
serialize["strings.json"] = lambda p: self.vocab.strings.to_disk(p)
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
def from_disk(self, path, exclude: Iterable[str] = SimpleFrozenList()):
|
|
path = ensure_path(path)
|
|
if not path.exists():
|
|
raise ValueError(Errors.E929.format(loc=path))
|
|
if not path.is_dir():
|
|
raise ValueError(Errors.E928.format(loc=path))
|
|
deserialize: Dict[str, Callable[[Any], Any]] = {}
|
|
deserialize["contents"] = lambda p: self.read_contents(p)
|
|
deserialize["strings.json"] = lambda p: self.vocab.strings.from_disk(p)
|
|
util.from_disk(path, deserialize, exclude)
|
|
|
|
def write_contents(self, file_path):
|
|
cdef Writer writer = Writer(file_path)
|
|
writer.write_header(self.get_size_entities(), self.entity_vector_length)
|
|
|
|
# dumping the entity vectors in their original order
|
|
i = 0
|
|
for entity_vector in self._vectors_table:
|
|
for element in entity_vector:
|
|
writer.write_vector_element(element)
|
|
i = i+1
|
|
|
|
# dumping the entry records in the order in which they are in the _entries vector.
|
|
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
|
i = 1
|
|
for entry_hash, entry_index in sorted(self._entry_index.items(), key=lambda x: x[1]):
|
|
entry = self._entries[entry_index]
|
|
assert entry.entity_hash == entry_hash
|
|
assert entry_index == i
|
|
writer.write_entry(entry.entity_hash, entry.freq, entry.vector_index)
|
|
i = i+1
|
|
|
|
writer.write_alias_length(self.get_size_aliases())
|
|
|
|
# dumping the aliases in the order in which they are in the _alias_index vector.
|
|
# index 0 is a dummy object not stored in the _aliases_table and can be ignored.
|
|
i = 1
|
|
for alias_hash, alias_index in sorted(self._alias_index.items(), key=lambda x: x[1]):
|
|
alias = self._aliases_table[alias_index]
|
|
assert alias_index == i
|
|
|
|
candidate_length = len(alias.entry_indices)
|
|
writer.write_alias_header(alias_hash, candidate_length)
|
|
|
|
for j in range(0, candidate_length):
|
|
writer.write_alias(alias.entry_indices[j], alias.probs[j])
|
|
|
|
i = i+1
|
|
|
|
writer.close()
|
|
|
|
def read_contents(self, file_path):
|
|
cdef hash_t entity_hash
|
|
cdef hash_t alias_hash
|
|
cdef int64_t entry_index
|
|
cdef float freq, prob
|
|
cdef int32_t vector_index
|
|
cdef KBEntryC entry
|
|
cdef AliasC alias
|
|
cdef float vector_element
|
|
|
|
cdef Reader reader = Reader(file_path)
|
|
|
|
# STEP 0: load header and initialize KB
|
|
cdef int64_t nr_entities
|
|
cdef int64_t entity_vector_length
|
|
reader.read_header(&nr_entities, &entity_vector_length)
|
|
|
|
self._initialize_entities(nr_entities)
|
|
self._initialize_vectors(nr_entities)
|
|
self.entity_vector_length = entity_vector_length
|
|
|
|
# STEP 1: load entity vectors
|
|
cdef int i = 0
|
|
cdef int j = 0
|
|
while i < nr_entities:
|
|
entity_vector = float_vec(entity_vector_length)
|
|
j = 0
|
|
while j < entity_vector_length:
|
|
reader.read_vector_element(&vector_element)
|
|
entity_vector[j] = vector_element
|
|
j = j+1
|
|
self._vectors_table[i] = entity_vector
|
|
i = i+1
|
|
|
|
# STEP 2: load entities
|
|
# we assume that the entity data was written in sequence
|
|
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
|
i = 1
|
|
while i <= nr_entities:
|
|
reader.read_entry(&entity_hash, &freq, &vector_index)
|
|
|
|
entry.entity_hash = entity_hash
|
|
entry.freq = freq
|
|
entry.vector_index = vector_index
|
|
entry.feats_row = -1 # Features table currently not implemented
|
|
|
|
self._entries[i] = entry
|
|
self._entry_index[entity_hash] = i
|
|
|
|
i += 1
|
|
|
|
# check that all entities were read in properly
|
|
assert nr_entities == self.get_size_entities()
|
|
|
|
# STEP 3: load aliases
|
|
cdef int64_t nr_aliases
|
|
reader.read_alias_length(&nr_aliases)
|
|
self._initialize_aliases(nr_aliases)
|
|
|
|
cdef int64_t nr_candidates
|
|
cdef vector[int64_t] entry_indices
|
|
cdef vector[float] probs
|
|
|
|
i = 1
|
|
# we assume the alias data was written in sequence
|
|
# index 0 is a dummy object not stored in the _entry_index and can be ignored.
|
|
while i <= nr_aliases:
|
|
reader.read_alias_header(&alias_hash, &nr_candidates)
|
|
entry_indices = vector[int64_t](nr_candidates)
|
|
probs = vector[float](nr_candidates)
|
|
|
|
for j in range(0, nr_candidates):
|
|
reader.read_alias(&entry_index, &prob)
|
|
entry_indices[j] = entry_index
|
|
probs[j] = prob
|
|
|
|
alias.entry_indices = entry_indices
|
|
alias.probs = probs
|
|
|
|
self._aliases_table[i] = alias
|
|
self._alias_index[alias_hash] = i
|
|
|
|
i += 1
|
|
|
|
# check that all aliases were read in properly
|
|
assert nr_aliases == self.get_size_aliases()
|
|
|
|
|
|
cdef class Writer:
|
|
def __init__(self, path):
|
|
assert isinstance(path, Path)
|
|
content = bytes(path)
|
|
cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content
|
|
self._fp = fopen(<char*>bytes_loc, 'wb')
|
|
if not self._fp:
|
|
raise IOError(Errors.E146.format(path=path))
|
|
fseek(self._fp, 0, 0)
|
|
|
|
def close(self):
|
|
cdef size_t status = fclose(self._fp)
|
|
assert status == 0
|
|
|
|
cdef int write_header(self, int64_t nr_entries, int64_t entity_vector_length) except -1:
|
|
self._write(&nr_entries, sizeof(nr_entries))
|
|
self._write(&entity_vector_length, sizeof(entity_vector_length))
|
|
|
|
cdef int write_vector_element(self, float element) except -1:
|
|
self._write(&element, sizeof(element))
|
|
|
|
cdef int write_entry(self, hash_t entry_hash, float entry_freq, int32_t vector_index) except -1:
|
|
self._write(&entry_hash, sizeof(entry_hash))
|
|
self._write(&entry_freq, sizeof(entry_freq))
|
|
self._write(&vector_index, sizeof(vector_index))
|
|
# Features table currently not implemented and not written to file
|
|
|
|
cdef int write_alias_length(self, int64_t alias_length) except -1:
|
|
self._write(&alias_length, sizeof(alias_length))
|
|
|
|
cdef int write_alias_header(self, hash_t alias_hash, int64_t candidate_length) except -1:
|
|
self._write(&alias_hash, sizeof(alias_hash))
|
|
self._write(&candidate_length, sizeof(candidate_length))
|
|
|
|
cdef int write_alias(self, int64_t entry_index, float prob) except -1:
|
|
self._write(&entry_index, sizeof(entry_index))
|
|
self._write(&prob, sizeof(prob))
|
|
|
|
cdef int _write(self, void* value, size_t size) except -1:
|
|
status = fwrite(value, size, 1, self._fp)
|
|
assert status == 1, status
|
|
|
|
|
|
cdef class Reader:
|
|
def __init__(self, path):
|
|
content = bytes(path)
|
|
cdef bytes bytes_loc = content.encode('utf8') if type(content) == str else content
|
|
self._fp = fopen(<char*>bytes_loc, 'rb')
|
|
if not self._fp:
|
|
PyErr_SetFromErrno(IOError)
|
|
status = fseek(self._fp, 0, 0) # this can be 0 if there is no header
|
|
|
|
def __dealloc__(self):
|
|
fclose(self._fp)
|
|
|
|
cdef int read_header(self, int64_t* nr_entries, int64_t* entity_vector_length) except -1:
|
|
status = self._read(nr_entries, sizeof(int64_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="header"))
|
|
|
|
status = self._read(entity_vector_length, sizeof(int64_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="vector length"))
|
|
|
|
cdef int read_vector_element(self, float* element) except -1:
|
|
status = self._read(element, sizeof(float))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="vector element"))
|
|
|
|
cdef int read_entry(self, hash_t* entity_hash, float* freq, int32_t* vector_index) except -1:
|
|
status = self._read(entity_hash, sizeof(hash_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="entity hash"))
|
|
|
|
status = self._read(freq, sizeof(float))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="entity freq"))
|
|
|
|
status = self._read(vector_index, sizeof(int32_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="vector index"))
|
|
|
|
if feof(self._fp):
|
|
return 0
|
|
else:
|
|
return 1
|
|
|
|
cdef int read_alias_length(self, int64_t* alias_length) except -1:
|
|
status = self._read(alias_length, sizeof(int64_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="alias length"))
|
|
|
|
cdef int read_alias_header(self, hash_t* alias_hash, int64_t* candidate_length) except -1:
|
|
status = self._read(alias_hash, sizeof(hash_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="alias hash"))
|
|
|
|
status = self._read(candidate_length, sizeof(int64_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="candidate length"))
|
|
|
|
cdef int read_alias(self, int64_t* entry_index, float* prob) except -1:
|
|
status = self._read(entry_index, sizeof(int64_t))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="entry index"))
|
|
|
|
status = self._read(prob, sizeof(float))
|
|
if status < 1:
|
|
if feof(self._fp):
|
|
return 0 # end of file
|
|
raise IOError(Errors.E145.format(param="prior probability"))
|
|
|
|
cdef int _read(self, void* value, size_t size) except -1:
|
|
status = fread(value, size, 1, self._fp)
|
|
return status
|