spaCy/spacy/tests/test_displacy.py
2022-12-16 15:25:29 +09:00

393 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import multiprocessing
import time
import numpy
import pytest
from spacy import displacy
from spacy.displacy.render import DependencyRenderer, EntityRenderer
from spacy.lang.en import English
from spacy.lang.fa import Persian
from spacy.tokens import Span, Doc
@pytest.mark.issue(2361)
def test_issue2361(de_vocab):
"""Test if < is escaped when rendering"""
chars = ("&lt;", "&gt;", "&amp;", "&quot;")
words = ["<", ">", "&", '"']
doc = Doc(de_vocab, words=words, deps=["dep"] * len(words))
html = displacy.render(doc)
for char in chars:
assert char in html
@pytest.mark.issue(2728)
def test_issue2728(en_vocab):
"""Test that displaCy ENT visualizer escapes HTML correctly."""
doc = Doc(en_vocab, words=["test", "<RELEASE>", "test"])
doc.ents = [Span(doc, 0, 1, label="TEST")]
html = displacy.render(doc, style="ent")
assert "&lt;RELEASE&gt;" in html
doc.ents = [Span(doc, 1, 2, label="TEST")]
html = displacy.render(doc, style="ent")
assert "&lt;RELEASE&gt;" in html
@pytest.mark.issue(3288)
def test_issue3288(en_vocab):
"""Test that retokenization works correctly via displaCy when punctuation
is merged onto the preceeding token and tensor is resized."""
words = ["Hello", "World", "!", "When", "is", "this", "breaking", "?"]
heads = [1, 1, 1, 4, 4, 6, 4, 4]
deps = ["intj", "ROOT", "punct", "advmod", "ROOT", "det", "nsubj", "punct"]
doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
doc.tensor = numpy.zeros((len(words), 96), dtype="float32")
displacy.render(doc)
@pytest.mark.issue(3531)
def test_issue3531():
"""Test that displaCy renderer doesn't require "settings" key."""
example_dep = {
"words": [
{"text": "But", "tag": "CCONJ"},
{"text": "Google", "tag": "PROPN"},
{"text": "is", "tag": "VERB"},
{"text": "starting", "tag": "VERB"},
{"text": "from", "tag": "ADP"},
{"text": "behind.", "tag": "ADV"},
],
"arcs": [
{"start": 0, "end": 3, "label": "cc", "dir": "left"},
{"start": 1, "end": 3, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "aux", "dir": "left"},
{"start": 3, "end": 4, "label": "prep", "dir": "right"},
{"start": 4, "end": 5, "label": "pcomp", "dir": "right"},
],
}
example_ent = {
"text": "But Google is starting from behind.",
"ents": [{"start": 4, "end": 10, "label": "ORG"}],
}
dep_html = displacy.render(example_dep, style="dep", manual=True)
assert dep_html
ent_html = displacy.render(example_ent, style="ent", manual=True)
assert ent_html
@pytest.mark.issue(3882)
def test_issue3882(en_vocab):
"""Test that displaCy doesn't serialize the doc.user_data when making a
copy of the Doc.
"""
doc = Doc(en_vocab, words=["Hello", "world"], deps=["dep", "dep"])
doc.user_data["test"] = set()
displacy.parse_deps(doc)
@pytest.mark.issue(5447)
def test_issue5447():
"""Test that overlapping arcs get separate levels, unless they're identical."""
renderer = DependencyRenderer()
words = [
{"text": "This", "tag": "DT"},
{"text": "is", "tag": "VBZ"},
{"text": "a", "tag": "DT"},
{"text": "sentence.", "tag": "NN"},
]
arcs = [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 2, "end": 3, "label": "overlap", "dir": "left"},
{"end": 3, "label": "overlap", "start": 2, "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "left"},
]
renderer.render([{"words": words, "arcs": arcs}])
assert renderer.highest_level == 3
@pytest.mark.issue(5838)
def test_issue5838():
# Displacy's EntityRenderer break line
# not working after last entity
sample_text = "First line\nSecond line, with ent\nThird line\nFourth line\n"
nlp = English()
doc = nlp(sample_text)
doc.ents = [Span(doc, 7, 8, label="test")]
html = displacy.render(doc, style="ent")
found = html.count("</br>")
assert found == 4
def test_displacy_parse_spans(en_vocab):
"""Test that spans on a Doc are converted into displaCy's format."""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["sc"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")]
spans = displacy.parse_spans(doc)
assert isinstance(spans, dict)
assert spans["text"] == "Welcome to the Bank of China "
assert spans["spans"] == [
{
"start": 15,
"end": 28,
"start_token": 3,
"end_token": 6,
"label": "ORG",
"kb_id": "",
"kb_url": "#",
},
{
"start": 23,
"end": 28,
"start_token": 5,
"end_token": 6,
"label": "GPE",
"kb_id": "",
"kb_url": "#",
},
]
def test_displacy_parse_spans_with_kb_id_options(en_vocab):
"""Test that spans with kb_id on a Doc are converted into displaCy's format"""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["sc"] = [
Span(doc, 3, 6, "ORG", kb_id="Q790068"),
Span(doc, 5, 6, "GPE", kb_id="Q148"),
]
spans = displacy.parse_spans(
doc, {"kb_url_template": "https://wikidata.org/wiki/{}"}
)
assert isinstance(spans, dict)
assert spans["text"] == "Welcome to the Bank of China "
assert spans["spans"] == [
{
"start": 15,
"end": 28,
"start_token": 3,
"end_token": 6,
"label": "ORG",
"kb_id": "Q790068",
"kb_url": "https://wikidata.org/wiki/Q790068",
},
{
"start": 23,
"end": 28,
"start_token": 5,
"end_token": 6,
"label": "GPE",
"kb_id": "Q148",
"kb_url": "https://wikidata.org/wiki/Q148",
},
]
def test_displacy_parse_spans_different_spans_key(en_vocab):
"""Test that spans in a different spans key will be parsed"""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["sc"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")]
doc.spans["custom"] = [Span(doc, 3, 6, "BANK")]
spans = displacy.parse_spans(doc, options={"spans_key": "custom"})
assert isinstance(spans, dict)
assert spans["text"] == "Welcome to the Bank of China "
assert spans["spans"] == [
{
"start": 15,
"end": 28,
"start_token": 3,
"end_token": 6,
"label": "BANK",
"kb_id": "",
"kb_url": "#",
}
]
def test_displacy_parse_empty_spans_key(en_vocab):
"""Test that having an unset spans key doesn't raise an error"""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["custom"] = [Span(doc, 3, 6, "BANK")]
with pytest.warns(UserWarning, match="W117"):
spans = displacy.parse_spans(doc)
assert isinstance(spans, dict)
def test_displacy_parse_ents(en_vocab):
"""Test that named entities on a Doc are converted into displaCy's format."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [
{"start": 4, "end": 10, "label": "ORG", "kb_id": "", "kb_url": "#"}
]
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")]
ents = displacy.parse_ents(doc)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [
{"start": 4, "end": 10, "label": "ORG", "kb_id": "Q95", "kb_url": "#"}
]
def test_displacy_parse_ents_with_kb_id_options(en_vocab):
"""Test that named entities with kb_id on a Doc are converted into displaCy's format."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"], kb_id="Q95")]
ents = displacy.parse_ents(
doc, {"kb_url_template": "https://www.wikidata.org/wiki/{}"}
)
assert isinstance(ents, dict)
assert ents["text"] == "But Google is starting from behind "
assert ents["ents"] == [
{
"start": 4,
"end": 10,
"label": "ORG",
"kb_id": "Q95",
"kb_url": "https://www.wikidata.org/wiki/Q95",
}
]
def test_displacy_parse_deps(en_vocab):
"""Test that deps and tags on a Doc are converted into displaCy's format."""
words = ["This", "is", "a", "sentence"]
heads = [1, 1, 3, 1]
pos = ["DET", "VERB", "DET", "NOUN"]
tags = ["DT", "VBZ", "DT", "NN"]
deps = ["nsubj", "ROOT", "det", "attr"]
doc = Doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags, deps=deps)
deps = displacy.parse_deps(doc)
assert isinstance(deps, dict)
assert deps["words"] == [
{"lemma": None, "text": words[0], "tag": pos[0]},
{"lemma": None, "text": words[1], "tag": pos[1]},
{"lemma": None, "text": words[2], "tag": pos[2]},
{"lemma": None, "text": words[3], "tag": pos[3]},
]
assert deps["arcs"] == [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": 2, "end": 3, "label": "det", "dir": "left"},
{"start": 1, "end": 3, "label": "attr", "dir": "right"},
]
def test_displacy_invalid_arcs():
renderer = DependencyRenderer()
words = [{"text": "This", "tag": "DET"}, {"text": "is", "tag": "VERB"}]
arcs = [
{"start": 0, "end": 1, "label": "nsubj", "dir": "left"},
{"start": -1, "end": 2, "label": "det", "dir": "left"},
]
with pytest.raises(ValueError):
renderer.render([{"words": words, "arcs": arcs}])
def test_displacy_spans(en_vocab):
"""Test that displaCy can render Spans."""
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc[1:4], style="ent")
assert html.startswith("<div")
def test_displacy_raises_for_wrong_type(en_vocab):
with pytest.raises(ValueError):
displacy.render("hello world")
def test_displacy_rtl():
# Source: http://www.sobhe.ir/hazm/ is this correct?
words = ["ما", "بسیار", "کتاب", "می\u200cخوانیم"]
# These are (likely) wrong, but it's just for testing
pos = ["PRO", "ADV", "N_PL", "V_SUB"] # needs to match lang.fa.tag_map
deps = ["foo", "bar", "foo", "baz"]
heads = [1, 0, 3, 1]
nlp = Persian()
doc = Doc(nlp.vocab, words=words, tags=pos, heads=heads, deps=deps)
doc.ents = [Span(doc, 1, 3, label="TEST")]
html = displacy.render(doc, page=True, style="dep")
assert "direction: rtl" in html
assert 'direction="rtl"' in html
assert f'lang="{nlp.lang}"' in html
html = displacy.render(doc, page=True, style="ent")
assert "direction: rtl" in html
assert f'lang="{nlp.lang}"' in html
def test_displacy_render_wrapper(en_vocab):
"""Test that displaCy accepts custom rendering wrapper."""
def wrapper(html):
return "TEST" + html + "TEST"
displacy.set_render_wrapper(wrapper)
doc = Doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings["ORG"])]
html = displacy.render(doc, style="ent")
assert html.startswith("TEST<div")
assert html.endswith("/div>TEST")
# Restore
displacy.set_render_wrapper(lambda html: html)
def test_displacy_options_case():
ents = ["foo", "BAR"]
colors = {"FOO": "red", "bar": "green"}
renderer = EntityRenderer({"ents": ents, "colors": colors})
text = "abcd"
labels = ["foo", "bar", "FOO", "BAR"]
spans = [{"start": i, "end": i + 1, "label": labels[i]} for i in range(len(text))]
result = renderer.render_ents("abcde", spans, None).split("\n\n")
assert "red" in result[0] and "foo" in result[0]
assert "green" in result[1] and "bar" in result[1]
assert "red" in result[2] and "FOO" in result[2]
assert "green" in result[3] and "BAR" in result[3]
@pytest.mark.issue(10672)
def test_displacy_manual_sorted_entities():
doc = {
"text": "But Google is starting from behind.",
"ents": [
{"start": 14, "end": 22, "label": "SECOND"},
{"start": 4, "end": 10, "label": "FIRST"},
],
"title": None,
}
html = displacy.render(doc, style="ent", manual=True)
assert html.find("FIRST") < html.find("SECOND")
def test_autoport(en_vocab):
"""Test that automatic port selection works"""
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
def background_server():
displacy.serve([doc], auto_select_port=True)
proc1 = multiprocessing.Process(target=background_server)
proc2 = multiprocessing.Process(target=background_server)
try:
proc1.start()
assert proc1.is_alive(), "displaCy server didn't start"
proc2.start()
time.sleep(1)
assert proc2.is_alive(), "Second displaCy server didn't start"
proc1.terminate()
proc2.terminate()
finally:
proc1.terminate()
proc2.terminate()
time.sleep(1)
proc1.close()
proc2.close()