mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			413 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			413 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| from numpy.testing import assert_equal
 | |
| from spacy.attrs import DEP
 | |
| 
 | |
| from spacy.lang.en import English
 | |
| from spacy.training import Example
 | |
| from spacy.tokens import Doc
 | |
| from spacy import util
 | |
| 
 | |
| from ..util import apply_transition_sequence, make_tempdir
 | |
| 
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     (
 | |
|         "They trade mortgage-backed securities.",
 | |
|         {
 | |
|             "heads": [1, 1, 4, 4, 5, 1, 1],
 | |
|             "deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
 | |
|         },
 | |
|     ),
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {
 | |
|             "heads": [1, 1, 1, 2, 2, 1],
 | |
|             "deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
 | |
|         },
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| 
 | |
| CONFLICTING_DATA = [
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {
 | |
|             "heads": [1, 1, 1, 2, 2, 1],
 | |
|             "deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
 | |
|         },
 | |
|     ),
 | |
|     (
 | |
|         "I like London and Berlin.",
 | |
|         {
 | |
|             "heads": [0, 0, 0, 0, 0, 0],
 | |
|             "deps": ["ROOT", "nsubj", "nsubj", "cc", "conj", "punct"],
 | |
|         },
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| PARTIAL_DATA = [
 | |
|     (
 | |
|         "I like London.",
 | |
|         {
 | |
|             "heads": [1, 1, 1, None],
 | |
|             "deps": ["nsubj", "ROOT", "dobj", None],
 | |
|         },
 | |
|     ),
 | |
| ]
 | |
| 
 | |
| eps = 0.1
 | |
| 
 | |
| 
 | |
| def test_parser_root(en_vocab):
 | |
|     words = ["i", "do", "n't", "have", "other", "assistance"]
 | |
|     heads = [3, 3, 3, 3, 5, 3]
 | |
|     deps = ["nsubj", "aux", "neg", "ROOT", "amod", "dobj"]
 | |
|     doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
 | |
|     for t in doc:
 | |
|         assert t.dep != 0, t.text
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(
 | |
|     reason="The step_through API was removed (but should be brought back)"
 | |
| )
 | |
| @pytest.mark.parametrize("words", [["Hello"]])
 | |
| def test_parser_parse_one_word_sentence(en_vocab, en_parser, words):
 | |
|     doc = Doc(en_vocab, words=words, heads=[0], deps=["ROOT"])
 | |
|     assert len(doc) == 1
 | |
|     with en_parser.step_through(doc) as _:  # noqa: F841
 | |
|         pass
 | |
|     assert doc[0].dep != 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(
 | |
|     reason="The step_through API was removed (but should be brought back)"
 | |
| )
 | |
| def test_parser_initial(en_vocab, en_parser):
 | |
|     words = ["I", "ate", "the", "pizza", "with", "anchovies", "."]
 | |
|     transition = ["L-nsubj", "S", "L-det"]
 | |
|     doc = Doc(en_vocab, words=words)
 | |
|     apply_transition_sequence(en_parser, doc, transition)
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[1].head.i == 1
 | |
|     assert doc[2].head.i == 3
 | |
|     assert doc[3].head.i == 3
 | |
| 
 | |
| 
 | |
| def test_parser_parse_subtrees(en_vocab, en_parser):
 | |
|     words = ["The", "four", "wheels", "on", "the", "bus", "turned", "quickly"]
 | |
|     heads = [2, 2, 6, 2, 5, 3, 6, 6]
 | |
|     deps = ["dep"] * len(heads)
 | |
|     doc = Doc(en_vocab, words=words, heads=heads, deps=deps)
 | |
|     assert len(list(doc[2].lefts)) == 2
 | |
|     assert len(list(doc[2].rights)) == 1
 | |
|     assert len(list(doc[2].children)) == 3
 | |
|     assert len(list(doc[5].lefts)) == 1
 | |
|     assert len(list(doc[5].rights)) == 0
 | |
|     assert len(list(doc[5].children)) == 1
 | |
|     assert len(list(doc[2].subtree)) == 6
 | |
| 
 | |
| 
 | |
| def test_parser_merge_pp(en_vocab):
 | |
|     words = ["A", "phrase", "with", "another", "phrase", "occurs"]
 | |
|     heads = [1, 5, 1, 4, 2, 5]
 | |
|     deps = ["det", "nsubj", "prep", "det", "pobj", "ROOT"]
 | |
|     pos = ["DET", "NOUN", "ADP", "DET", "NOUN", "VERB"]
 | |
|     doc = Doc(en_vocab, words=words, deps=deps, heads=heads, pos=pos)
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for np in doc.noun_chunks:
 | |
|             retokenizer.merge(np, attrs={"lemma": np.lemma_})
 | |
|     assert doc[0].text == "A phrase"
 | |
|     assert doc[1].text == "with"
 | |
|     assert doc[2].text == "another phrase"
 | |
|     assert doc[3].text == "occurs"
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(
 | |
|     reason="The step_through API was removed (but should be brought back)"
 | |
| )
 | |
| def test_parser_arc_eager_finalize_state(en_vocab, en_parser):
 | |
|     words = ["a", "b", "c", "d", "e"]
 | |
|     # right branching
 | |
|     transition = ["R-nsubj", "D", "R-nsubj", "R-nsubj", "D", "R-ROOT"]
 | |
|     tokens = Doc(en_vocab, words=words)
 | |
|     apply_transition_sequence(en_parser, tokens, transition)
 | |
| 
 | |
|     assert tokens[0].n_lefts == 0
 | |
|     assert tokens[0].n_rights == 2
 | |
|     assert tokens[0].left_edge.i == 0
 | |
|     assert tokens[0].right_edge.i == 4
 | |
|     assert tokens[0].head.i == 0
 | |
| 
 | |
|     assert tokens[1].n_lefts == 0
 | |
|     assert tokens[1].n_rights == 0
 | |
|     assert tokens[1].left_edge.i == 1
 | |
|     assert tokens[1].right_edge.i == 1
 | |
|     assert tokens[1].head.i == 0
 | |
| 
 | |
|     assert tokens[2].n_lefts == 0
 | |
|     assert tokens[2].n_rights == 2
 | |
|     assert tokens[2].left_edge.i == 2
 | |
|     assert tokens[2].right_edge.i == 4
 | |
|     assert tokens[2].head.i == 0
 | |
| 
 | |
|     assert tokens[3].n_lefts == 0
 | |
|     assert tokens[3].n_rights == 0
 | |
|     assert tokens[3].left_edge.i == 3
 | |
|     assert tokens[3].right_edge.i == 3
 | |
|     assert tokens[3].head.i == 2
 | |
| 
 | |
|     assert tokens[4].n_lefts == 0
 | |
|     assert tokens[4].n_rights == 0
 | |
|     assert tokens[4].left_edge.i == 4
 | |
|     assert tokens[4].right_edge.i == 4
 | |
|     assert tokens[4].head.i == 2
 | |
| 
 | |
|     # left branching
 | |
|     transition = ["S", "S", "S", "L-nsubj", "L-nsubj", "L-nsubj", "L-nsubj"]
 | |
|     tokens = Doc(en_vocab, words=words)
 | |
|     apply_transition_sequence(en_parser, tokens, transition)
 | |
| 
 | |
|     assert tokens[0].n_lefts == 0
 | |
|     assert tokens[0].n_rights == 0
 | |
|     assert tokens[0].left_edge.i == 0
 | |
|     assert tokens[0].right_edge.i == 0
 | |
|     assert tokens[0].head.i == 4
 | |
| 
 | |
|     assert tokens[1].n_lefts == 0
 | |
|     assert tokens[1].n_rights == 0
 | |
|     assert tokens[1].left_edge.i == 1
 | |
|     assert tokens[1].right_edge.i == 1
 | |
|     assert tokens[1].head.i == 4
 | |
| 
 | |
|     assert tokens[2].n_lefts == 0
 | |
|     assert tokens[2].n_rights == 0
 | |
|     assert tokens[2].left_edge.i == 2
 | |
|     assert tokens[2].right_edge.i == 2
 | |
|     assert tokens[2].head.i == 4
 | |
| 
 | |
|     assert tokens[3].n_lefts == 0
 | |
|     assert tokens[3].n_rights == 0
 | |
|     assert tokens[3].left_edge.i == 3
 | |
|     assert tokens[3].right_edge.i == 3
 | |
|     assert tokens[3].head.i == 4
 | |
| 
 | |
|     assert tokens[4].n_lefts == 4
 | |
|     assert tokens[4].n_rights == 0
 | |
|     assert tokens[4].left_edge.i == 0
 | |
|     assert tokens[4].right_edge.i == 4
 | |
|     assert tokens[4].head.i == 4
 | |
| 
 | |
| 
 | |
| def test_parser_set_sent_starts(en_vocab):
 | |
|     # fmt: off
 | |
|     words = ['Ein', 'Satz', '.', 'Außerdem', 'ist', 'Zimmer', 'davon', 'überzeugt', ',', 'dass', 'auch', 'epige-', '\n', 'netische', 'Mechanismen', 'eine', 'Rolle', 'spielen', ',', 'also', 'Vorgänge', ',', 'die', '\n', 'sich', 'darauf', 'auswirken', ',', 'welche', 'Gene', 'abgelesen', 'werden', 'und', '\n', 'welche', 'nicht', '.', '\n']
 | |
|     heads = [1, 1, 1, 30, 4, 4, 7, 4, 7, 17, 14, 14, 11, 14, 17, 16, 17, 6, 17, 20, 11, 20, 26, 22, 26, 26, 20, 26, 29, 31, 31, 25, 31, 32, 17, 4, 4, 36]
 | |
|     deps = ['nk', 'ROOT', 'punct', 'mo', 'ROOT', 'sb', 'op', 'pd', 'punct', 'cp', 'mo', 'nk', '', 'nk', 'sb', 'nk', 'oa', 're', 'punct', 'mo', 'app', 'punct', 'sb', '', 'oa', 'op', 'rc', 'punct', 'nk', 'sb', 'oc', 're', 'cd', '', 'oa', 'ng', 'punct', '']
 | |
|     # fmt: on
 | |
|     doc = Doc(en_vocab, words=words, deps=deps, heads=heads)
 | |
|     for i in range(len(words)):
 | |
|         if i == 0 or i == 3:
 | |
|             assert doc[i].is_sent_start is True
 | |
|         else:
 | |
|             assert doc[i].is_sent_start is False
 | |
|     for sent in doc.sents:
 | |
|         for token in sent:
 | |
|             assert token.head in sent
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
 | |
| def test_incomplete_data(pipe_name):
 | |
|     # Test that the parser works with incomplete information
 | |
|     nlp = English()
 | |
|     parser = nlp.add_pipe(pipe_name)
 | |
|     train_examples = []
 | |
|     for text, annotations in PARTIAL_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for dep in annotations.get("deps", []):
 | |
|             if dep is not None:
 | |
|                 parser.add_label(dep)
 | |
|     optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | |
|     for i in range(150):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses[pipe_name] < 0.0001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like securities."
 | |
|     doc = nlp(test_text)
 | |
|     assert doc[0].dep_ == "nsubj"
 | |
|     assert doc[2].dep_ == "dobj"
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[2].head.i == 1
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
 | |
| def test_overfitting_IO(pipe_name):
 | |
|     # Simple test to try and quickly overfit the dependency parser (normal or beam)
 | |
|     nlp = English()
 | |
|     parser = nlp.add_pipe(pipe_name)
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for dep in annotations.get("deps", []):
 | |
|             parser.add_label(dep)
 | |
|     optimizer = nlp.initialize()
 | |
|     # run overfitting
 | |
|     for i in range(200):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses[pipe_name] < 0.0001
 | |
|     # test the trained model
 | |
|     test_text = "I like securities."
 | |
|     doc = nlp(test_text)
 | |
|     assert doc[0].dep_ == "nsubj"
 | |
|     assert doc[2].dep_ == "dobj"
 | |
|     assert doc[3].dep_ == "punct"
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[2].head.i == 1
 | |
|     assert doc[3].head.i == 1
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         assert doc2[0].dep_ == "nsubj"
 | |
|         assert doc2[2].dep_ == "dobj"
 | |
|         assert doc2[3].dep_ == "punct"
 | |
|         assert doc2[0].head.i == 1
 | |
|         assert doc2[2].head.i == 1
 | |
|         assert doc2[3].head.i == 1
 | |
| 
 | |
|     # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
 | |
|     texts = [
 | |
|         "Just a sentence.",
 | |
|         "Then one more sentence about London.",
 | |
|         "Here is another one.",
 | |
|         "I like London.",
 | |
|     ]
 | |
|     batch_deps_1 = [doc.to_array([DEP]) for doc in nlp.pipe(texts)]
 | |
|     batch_deps_2 = [doc.to_array([DEP]) for doc in nlp.pipe(texts)]
 | |
|     no_batch_deps = [doc.to_array([DEP]) for doc in [nlp(text) for text in texts]]
 | |
|     assert_equal(batch_deps_1, batch_deps_2)
 | |
|     assert_equal(batch_deps_1, no_batch_deps)
 | |
| 
 | |
| 
 | |
| def test_beam_parser_scores():
 | |
|     # Test that we can get confidence values out of the beam_parser pipe
 | |
|     beam_width = 16
 | |
|     beam_density = 0.0001
 | |
|     nlp = English()
 | |
|     config = {
 | |
|         "beam_width": beam_width,
 | |
|         "beam_density": beam_density,
 | |
|     }
 | |
|     parser = nlp.add_pipe("beam_parser", config=config)
 | |
|     train_examples = []
 | |
|     for text, annotations in CONFLICTING_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for dep in annotations.get("deps", []):
 | |
|             parser.add_label(dep)
 | |
|     optimizer = nlp.initialize()
 | |
| 
 | |
|     # update a bit with conflicting data
 | |
|     for i in range(10):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
| 
 | |
|     # test the scores from the beam
 | |
|     test_text = "I like securities."
 | |
|     doc = nlp.make_doc(test_text)
 | |
|     docs = [doc]
 | |
|     beams = parser.predict(docs)
 | |
|     head_scores, label_scores = parser.scored_parses(beams)
 | |
| 
 | |
|     for j in range(len(doc)):
 | |
|         for label in parser.labels:
 | |
|             label_score = label_scores[0][(j, label)]
 | |
|             assert 0 - eps <= label_score <= 1 + eps
 | |
|         for i in range(len(doc)):
 | |
|             head_score = head_scores[0][(j, i)]
 | |
|             assert 0 - eps <= head_score <= 1 + eps
 | |
| 
 | |
| 
 | |
| def test_beam_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the Beam dependency parser
 | |
|     nlp = English()
 | |
|     beam_width = 16
 | |
|     beam_density = 0.0001
 | |
|     config = {
 | |
|         "beam_width": beam_width,
 | |
|         "beam_density": beam_density,
 | |
|     }
 | |
|     parser = nlp.add_pipe("beam_parser", config=config)
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for dep in annotations.get("deps", []):
 | |
|             parser.add_label(dep)
 | |
|     optimizer = nlp.initialize()
 | |
|     # run overfitting
 | |
|     for i in range(150):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["beam_parser"] < 0.0001
 | |
|     # test the scores from the beam
 | |
|     test_text = "I like securities."
 | |
|     docs = [nlp.make_doc(test_text)]
 | |
|     beams = parser.predict(docs)
 | |
|     head_scores, label_scores = parser.scored_parses(beams)
 | |
|     # we only processed one document
 | |
|     head_scores = head_scores[0]
 | |
|     label_scores = label_scores[0]
 | |
|     # test label annotations: 0=nsubj, 2=dobj, 3=punct
 | |
|     assert label_scores[(0, "nsubj")] == pytest.approx(1.0, abs=eps)
 | |
|     assert label_scores[(0, "dobj")] == pytest.approx(0.0, abs=eps)
 | |
|     assert label_scores[(0, "punct")] == pytest.approx(0.0, abs=eps)
 | |
|     assert label_scores[(2, "nsubj")] == pytest.approx(0.0, abs=eps)
 | |
|     assert label_scores[(2, "dobj")] == pytest.approx(1.0, abs=eps)
 | |
|     assert label_scores[(2, "punct")] == pytest.approx(0.0, abs=eps)
 | |
|     assert label_scores[(3, "nsubj")] == pytest.approx(0.0, abs=eps)
 | |
|     assert label_scores[(3, "dobj")] == pytest.approx(0.0, abs=eps)
 | |
|     assert label_scores[(3, "punct")] == pytest.approx(1.0, abs=eps)
 | |
|     # test head annotations: the root is token at index 1
 | |
|     assert head_scores[(0, 0)] == pytest.approx(0.0, abs=eps)
 | |
|     assert head_scores[(0, 1)] == pytest.approx(1.0, abs=eps)
 | |
|     assert head_scores[(0, 2)] == pytest.approx(0.0, abs=eps)
 | |
|     assert head_scores[(2, 0)] == pytest.approx(0.0, abs=eps)
 | |
|     assert head_scores[(2, 1)] == pytest.approx(1.0, abs=eps)
 | |
|     assert head_scores[(2, 2)] == pytest.approx(0.0, abs=eps)
 | |
|     assert head_scores[(3, 0)] == pytest.approx(0.0, abs=eps)
 | |
|     assert head_scores[(3, 1)] == pytest.approx(1.0, abs=eps)
 | |
|     assert head_scores[(3, 2)] == pytest.approx(0.0, abs=eps)
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         docs2 = [nlp2.make_doc(test_text)]
 | |
|         parser2 = nlp2.get_pipe("beam_parser")
 | |
|         beams2 = parser2.predict(docs2)
 | |
|         head_scores2, label_scores2 = parser2.scored_parses(beams2)
 | |
|         # we only processed one document
 | |
|         head_scores2 = head_scores2[0]
 | |
|         label_scores2 = label_scores2[0]
 | |
|         # check the results again
 | |
|         assert label_scores2[(0, "nsubj")] == pytest.approx(1.0, abs=eps)
 | |
|         assert label_scores2[(0, "dobj")] == pytest.approx(0.0, abs=eps)
 | |
|         assert label_scores2[(0, "punct")] == pytest.approx(0.0, abs=eps)
 | |
|         assert label_scores2[(2, "nsubj")] == pytest.approx(0.0, abs=eps)
 | |
|         assert label_scores2[(2, "dobj")] == pytest.approx(1.0, abs=eps)
 | |
|         assert label_scores2[(2, "punct")] == pytest.approx(0.0, abs=eps)
 | |
|         assert label_scores2[(3, "nsubj")] == pytest.approx(0.0, abs=eps)
 | |
|         assert label_scores2[(3, "dobj")] == pytest.approx(0.0, abs=eps)
 | |
|         assert label_scores2[(3, "punct")] == pytest.approx(1.0, abs=eps)
 | |
|         assert head_scores2[(0, 0)] == pytest.approx(0.0, abs=eps)
 | |
|         assert head_scores2[(0, 1)] == pytest.approx(1.0, abs=eps)
 | |
|         assert head_scores2[(0, 2)] == pytest.approx(0.0, abs=eps)
 | |
|         assert head_scores2[(2, 0)] == pytest.approx(0.0, abs=eps)
 | |
|         assert head_scores2[(2, 1)] == pytest.approx(1.0, abs=eps)
 | |
|         assert head_scores2[(2, 2)] == pytest.approx(0.0, abs=eps)
 | |
|         assert head_scores2[(3, 0)] == pytest.approx(0.0, abs=eps)
 | |
|         assert head_scores2[(3, 1)] == pytest.approx(1.0, abs=eps)
 | |
|         assert head_scores2[(3, 2)] == pytest.approx(0.0, abs=eps)
 |