mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
2a558a7cdc
* Switch to mecab-ko as default Korean tokenizer
Switch to the (confusingly-named) mecab-ko python module for default Korean
tokenization.
Maintain the previous `natto-py` tokenizer as
`spacy.KoreanNattoTokenizer.v1`.
* Temporarily run tests with mecab-ko tokenizer
* Fix types
* Fix duplicate test names
* Update requirements test
* Revert "Temporarily run tests with mecab-ko tokenizer"
This reverts commit d2083e7044
.
* Add mecab_args setting, fix pickle for KoreanNattoTokenizer
* Fix length check
* Update docs
* Formatting
* Update natto-py error message
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
193 lines
6.7 KiB
Python
193 lines
6.7 KiB
Python
from typing import Iterator, Any, Dict
|
|
|
|
from .punctuation import TOKENIZER_INFIXES
|
|
from .stop_words import STOP_WORDS
|
|
from .tag_map import TAG_MAP
|
|
from .lex_attrs import LEX_ATTRS
|
|
from ...language import Language, BaseDefaults
|
|
from ...tokens import Doc
|
|
from ...scorer import Scorer
|
|
from ...symbols import POS, X
|
|
from ...training import validate_examples
|
|
from ...util import DummyTokenizer, registry, load_config_from_str
|
|
from ...vocab import Vocab
|
|
|
|
|
|
DEFAULT_CONFIG = """
|
|
[nlp]
|
|
|
|
[nlp.tokenizer]
|
|
@tokenizers = "spacy.ko.KoreanTokenizer"
|
|
mecab_args = ""
|
|
"""
|
|
|
|
|
|
@registry.tokenizers("spacy.ko.KoreanTokenizer")
|
|
def create_tokenizer(mecab_args: str):
|
|
def korean_tokenizer_factory(nlp):
|
|
return KoreanTokenizer(nlp.vocab, mecab_args=mecab_args)
|
|
|
|
return korean_tokenizer_factory
|
|
|
|
|
|
class KoreanTokenizer(DummyTokenizer):
|
|
def __init__(self, vocab: Vocab, *, mecab_args: str = ""):
|
|
self.vocab = vocab
|
|
mecab = try_mecab_import()
|
|
self.mecab_tokenizer = mecab.Tagger(mecab_args)
|
|
|
|
def __reduce__(self):
|
|
return KoreanTokenizer, (self.vocab,)
|
|
|
|
def __call__(self, text: str) -> Doc:
|
|
dtokens = list(self.detailed_tokens(text))
|
|
surfaces = [dt["surface"] for dt in dtokens]
|
|
doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
|
|
for token, dtoken in zip(doc, dtokens):
|
|
first_tag, sep, eomi_tags = dtoken["tag"].partition("+")
|
|
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
|
|
if token.tag_ in TAG_MAP:
|
|
token.pos = TAG_MAP[token.tag_][POS]
|
|
else:
|
|
token.pos = X
|
|
token.lemma_ = dtoken["lemma"]
|
|
doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens]
|
|
return doc
|
|
|
|
def detailed_tokens(self, text: str) -> Iterator[Dict[str, Any]]:
|
|
# 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3],
|
|
# 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], *
|
|
for line in self.mecab_tokenizer.parse(text).split("\n"):
|
|
if line == "EOS":
|
|
break
|
|
surface, _, expr = line.partition("\t")
|
|
features = expr.split("/")[0].split(",")
|
|
tag = features[0]
|
|
lemma = "*"
|
|
if len(features) >= 8:
|
|
lemma = features[7]
|
|
if lemma == "*":
|
|
lemma = surface
|
|
yield {"surface": surface, "lemma": lemma, "tag": tag}
|
|
|
|
def score(self, examples):
|
|
validate_examples(examples, "KoreanTokenizer.score")
|
|
return Scorer.score_tokenization(examples)
|
|
|
|
|
|
class KoreanDefaults(BaseDefaults):
|
|
config = load_config_from_str(DEFAULT_CONFIG)
|
|
lex_attr_getters = LEX_ATTRS
|
|
stop_words = STOP_WORDS
|
|
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
|
infixes = TOKENIZER_INFIXES
|
|
|
|
|
|
class Korean(Language):
|
|
lang = "ko"
|
|
Defaults = KoreanDefaults
|
|
|
|
|
|
def try_mecab_import():
|
|
try:
|
|
import mecab_ko as MeCab
|
|
|
|
return MeCab
|
|
except ImportError:
|
|
raise ImportError(
|
|
'The Korean tokenizer ("spacy.ko.KoreanTokenizer") requires '
|
|
"the python package `mecab-ko`: pip install mecab-ko"
|
|
) from None
|
|
|
|
|
|
@registry.tokenizers("spacy.KoreanNattoTokenizer.v1")
|
|
def create_natto_tokenizer():
|
|
def korean_natto_tokenizer_factory(nlp):
|
|
return KoreanNattoTokenizer(nlp.vocab)
|
|
|
|
return korean_natto_tokenizer_factory
|
|
|
|
|
|
class KoreanNattoTokenizer(DummyTokenizer):
|
|
def __init__(self, vocab: Vocab):
|
|
self.vocab = vocab
|
|
self._mecab = self._try_mecab_import() # type: ignore[func-returns-value]
|
|
self._mecab_tokenizer = None
|
|
|
|
@property
|
|
def mecab_tokenizer(self):
|
|
# This is a property so that initializing a pipeline with blank:ko is
|
|
# possible without actually requiring mecab-ko, e.g. to run
|
|
# `spacy init vectors ko` for a pipeline that will have a different
|
|
# tokenizer in the end. The languages need to match for the vectors
|
|
# to be imported and there's no way to pass a custom config to
|
|
# `init vectors`.
|
|
if self._mecab_tokenizer is None:
|
|
self._mecab_tokenizer = self._mecab("-F%f[0],%f[7]")
|
|
return self._mecab_tokenizer
|
|
|
|
def __reduce__(self):
|
|
return KoreanNattoTokenizer, (self.vocab,)
|
|
|
|
def __call__(self, text: str) -> Doc:
|
|
dtokens = list(self.detailed_tokens(text))
|
|
surfaces = [dt["surface"] for dt in dtokens]
|
|
doc = Doc(self.vocab, words=surfaces, spaces=list(check_spaces(text, surfaces)))
|
|
for token, dtoken in zip(doc, dtokens):
|
|
first_tag, sep, eomi_tags = dtoken["tag"].partition("+")
|
|
token.tag_ = first_tag # stem(어간) or pre-final(선어말 어미)
|
|
if token.tag_ in TAG_MAP:
|
|
token.pos = TAG_MAP[token.tag_][POS]
|
|
else:
|
|
token.pos = X
|
|
token.lemma_ = dtoken["lemma"]
|
|
doc.user_data["full_tags"] = [dt["tag"] for dt in dtokens]
|
|
return doc
|
|
|
|
def detailed_tokens(self, text: str) -> Iterator[Dict[str, Any]]:
|
|
# 품사 태그(POS)[0], 의미 부류(semantic class)[1], 종성 유무(jongseong)[2], 읽기(reading)[3],
|
|
# 타입(type)[4], 첫번째 품사(start pos)[5], 마지막 품사(end pos)[6], 표현(expression)[7], *
|
|
for node in self.mecab_tokenizer.parse(text, as_nodes=True):
|
|
if node.is_eos():
|
|
break
|
|
surface = node.surface
|
|
feature = node.feature
|
|
tag, _, expr = feature.partition(",")
|
|
lemma, _, remainder = expr.partition("/")
|
|
if lemma == "*" or lemma == "":
|
|
lemma = surface
|
|
yield {"surface": surface, "lemma": lemma, "tag": tag}
|
|
|
|
def score(self, examples):
|
|
validate_examples(examples, "KoreanTokenizer.score")
|
|
return Scorer.score_tokenization(examples)
|
|
|
|
def _try_mecab_import(self):
|
|
try:
|
|
from natto import MeCab
|
|
|
|
return MeCab
|
|
except ImportError:
|
|
raise ImportError(
|
|
'The Korean Natto tokenizer ("spacy.ko.KoreanNattoTokenizer") requires '
|
|
"[mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), "
|
|
"[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), "
|
|
"and [natto-py](https://github.com/buruzaemon/natto-py)"
|
|
) from None
|
|
|
|
|
|
def check_spaces(text, tokens):
|
|
prev_end = -1
|
|
start = 0
|
|
for token in tokens:
|
|
idx = text.find(token, start)
|
|
if prev_end > 0:
|
|
yield prev_end != idx
|
|
prev_end = idx + len(token)
|
|
start = prev_end
|
|
if start > 0:
|
|
yield False
|
|
|
|
|
|
__all__ = ["Korean"]
|