mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Fix `get_loss` to use NER annotation * Add labels as part of cfg * Add simple overfitting test
		
			
				
	
	
		
			46 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from spacy.lang.en import English
 | |
| from spacy.gold import Example
 | |
| from spacy import util
 | |
| from ..util import make_tempdir
 | |
| 
 | |
| 
 | |
| TRAIN_DATA = [
 | |
|     ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
 | |
|     ("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def test_overfitting_IO():
 | |
|     # Simple test to try and quickly overfit the SimpleNER component - ensuring the ML models work correctly
 | |
|     nlp = English()
 | |
|     ner = nlp.add_pipe("simple_ner")
 | |
|     train_examples = []
 | |
|     for text, annotations in TRAIN_DATA:
 | |
|         train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | |
|         for ent in annotations.get("entities"):
 | |
|             ner.add_label(ent[2])
 | |
|     optimizer = nlp.begin_training()
 | |
| 
 | |
|     for i in range(50):
 | |
|         losses = {}
 | |
|         nlp.update(train_examples, sgd=optimizer, losses=losses)
 | |
|     assert losses["ner"] < 0.0001
 | |
| 
 | |
|     # test the trained model
 | |
|     test_text = "I like London."
 | |
|     doc = nlp(test_text)
 | |
|     ents = doc.ents
 | |
|     assert len(ents) == 1
 | |
|     assert ents[0].text == "London"
 | |
|     assert ents[0].label_ == "LOC"
 | |
| 
 | |
|     # Also test the results are still the same after IO
 | |
|     with make_tempdir() as tmp_dir:
 | |
|         nlp.to_disk(tmp_dir)
 | |
|         nlp2 = util.load_model_from_path(tmp_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         ents2 = doc2.ents
 | |
|         assert len(ents2) == 1
 | |
|         assert ents2[0].text == "London"
 | |
|         assert ents2[0].label_ == "LOC"
 |