mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
05bdbe28bb
* ensure vectors data is stored on right device * ensure the added vector is on the right device * move vector to numpy before iterating * move best_rows to numpy before iterating
482 lines
17 KiB
Cython
482 lines
17 KiB
Cython
cimport numpy as np
|
|
from cython.operator cimport dereference as deref
|
|
from libcpp.set cimport set as cppset
|
|
|
|
import functools
|
|
import numpy
|
|
import srsly
|
|
from thinc.api import get_array_module, get_current_ops
|
|
|
|
from .strings cimport StringStore
|
|
|
|
from .strings import get_string_id
|
|
from .errors import Errors
|
|
from . import util
|
|
|
|
|
|
def unpickle_vectors(bytes_data):
|
|
return Vectors().from_bytes(bytes_data)
|
|
|
|
|
|
class GlobalRegistry:
|
|
"""Global store of vectors, to avoid repeatedly loading the data."""
|
|
data = {}
|
|
|
|
@classmethod
|
|
def register(cls, name, data):
|
|
cls.data[name] = data
|
|
return functools.partial(cls.get, name)
|
|
|
|
@classmethod
|
|
def get(cls, name):
|
|
return cls.data[name]
|
|
|
|
|
|
cdef class Vectors:
|
|
"""Store, save and load word vectors.
|
|
|
|
Vectors data is kept in the vectors.data attribute, which should be an
|
|
instance of numpy.ndarray (for CPU vectors) or cupy.ndarray
|
|
(for GPU vectors). `vectors.key2row` is a dictionary mapping word hashes to
|
|
rows in the vectors.data table.
|
|
|
|
Multiple keys can be mapped to the same vector, and not all of the rows in
|
|
the table need to be assigned - so len(list(vectors.keys())) may be
|
|
greater or smaller than vectors.shape[0].
|
|
|
|
DOCS: https://spacy.io/api/vectors
|
|
"""
|
|
cdef public object name
|
|
cdef public object data
|
|
cdef public object key2row
|
|
cdef cppset[int] _unset
|
|
|
|
def __init__(self, *, shape=None, data=None, keys=None, name=None):
|
|
"""Create a new vector store.
|
|
|
|
shape (tuple): Size of the table, as (# entries, # columns)
|
|
data (numpy.ndarray or cupy.ndarray): The vector data.
|
|
keys (iterable): A sequence of keys, aligned with the data.
|
|
name (str): A name to identify the vectors table.
|
|
|
|
DOCS: https://spacy.io/api/vectors#init
|
|
"""
|
|
self.name = name
|
|
if data is None:
|
|
if shape is None:
|
|
shape = (0,0)
|
|
ops = get_current_ops()
|
|
data = ops.xp.zeros(shape, dtype="f")
|
|
self.data = data
|
|
self.key2row = {}
|
|
if self.data is not None:
|
|
self._unset = cppset[int]({i for i in range(self.data.shape[0])})
|
|
else:
|
|
self._unset = cppset[int]()
|
|
if keys is not None:
|
|
for i, key in enumerate(keys):
|
|
self.add(key, row=i)
|
|
|
|
@property
|
|
def shape(self):
|
|
"""Get `(rows, dims)` tuples of number of rows and number of dimensions
|
|
in the vector table.
|
|
|
|
RETURNS (tuple): A `(rows, dims)` pair.
|
|
|
|
DOCS: https://spacy.io/api/vectors#shape
|
|
"""
|
|
return self.data.shape
|
|
|
|
@property
|
|
def size(self):
|
|
"""The vector size i,e. rows * dims.
|
|
|
|
RETURNS (int): The vector size.
|
|
|
|
DOCS: https://spacy.io/api/vectors#size
|
|
"""
|
|
return self.data.shape[0] * self.data.shape[1]
|
|
|
|
@property
|
|
def is_full(self):
|
|
"""Whether the vectors table is full.
|
|
|
|
RETURNS (bool): `True` if no slots are available for new keys.
|
|
|
|
DOCS: https://spacy.io/api/vectors#is_full
|
|
"""
|
|
return self._unset.size() == 0
|
|
|
|
@property
|
|
def n_keys(self):
|
|
"""Get the number of keys in the table. Note that this is the number
|
|
of all keys, not just unique vectors.
|
|
|
|
RETURNS (int): The number of keys in the table.
|
|
|
|
DOCS: https://spacy.io/api/vectors#n_keys
|
|
"""
|
|
return len(self.key2row)
|
|
|
|
def __reduce__(self):
|
|
return (unpickle_vectors, (self.to_bytes(),))
|
|
|
|
def __getitem__(self, key):
|
|
"""Get a vector by key. If the key is not found, a KeyError is raised.
|
|
|
|
key (int): The key to get the vector for.
|
|
RETURNS (ndarray): The vector for the key.
|
|
|
|
DOCS: https://spacy.io/api/vectors#getitem
|
|
"""
|
|
i = self.key2row[key]
|
|
if i is None:
|
|
raise KeyError(Errors.E058.format(key=key))
|
|
else:
|
|
return self.data[i]
|
|
|
|
def __setitem__(self, key, vector):
|
|
"""Set a vector for the given key.
|
|
|
|
key (int): The key to set the vector for.
|
|
vector (ndarray): The vector to set.
|
|
|
|
DOCS: https://spacy.io/api/vectors#setitem
|
|
"""
|
|
i = self.key2row[key]
|
|
self.data[i] = vector
|
|
if self._unset.count(i):
|
|
self._unset.erase(self._unset.find(i))
|
|
|
|
def __iter__(self):
|
|
"""Iterate over the keys in the table.
|
|
|
|
YIELDS (int): A key in the table.
|
|
|
|
DOCS: https://spacy.io/api/vectors#iter
|
|
"""
|
|
yield from self.key2row
|
|
|
|
def __len__(self):
|
|
"""Return the number of vectors in the table.
|
|
|
|
RETURNS (int): The number of vectors in the data.
|
|
|
|
DOCS: https://spacy.io/api/vectors#len
|
|
"""
|
|
return self.data.shape[0]
|
|
|
|
def __contains__(self, key):
|
|
"""Check whether a key has been mapped to a vector entry in the table.
|
|
|
|
key (int): The key to check.
|
|
RETURNS (bool): Whether the key has a vector entry.
|
|
|
|
DOCS: https://spacy.io/api/vectors#contains
|
|
"""
|
|
return key in self.key2row
|
|
|
|
def resize(self, shape, inplace=False):
|
|
"""Resize the underlying vectors array. If inplace=True, the memory
|
|
is reallocated. This may cause other references to the data to become
|
|
invalid, so only use inplace=True if you're sure that's what you want.
|
|
|
|
If the number of vectors is reduced, keys mapped to rows that have been
|
|
deleted are removed. These removed items are returned as a list of
|
|
`(key, row)` tuples.
|
|
|
|
shape (tuple): A `(rows, dims)` tuple.
|
|
inplace (bool): Reallocate the memory.
|
|
RETURNS (list): The removed items as a list of `(key, row)` tuples.
|
|
|
|
DOCS: https://spacy.io/api/vectors#resize
|
|
"""
|
|
xp = get_array_module(self.data)
|
|
if inplace:
|
|
if shape[1] != self.data.shape[1]:
|
|
raise ValueError(Errors.E193.format(new_dim=shape[1], curr_dim=self.data.shape[1]))
|
|
if xp == numpy:
|
|
self.data.resize(shape, refcheck=False)
|
|
else:
|
|
raise ValueError(Errors.E192)
|
|
else:
|
|
resized_array = xp.zeros(shape, dtype=self.data.dtype)
|
|
copy_shape = (min(shape[0], self.data.shape[0]), min(shape[1], self.data.shape[1]))
|
|
resized_array[:copy_shape[0], :copy_shape[1]] = self.data[:copy_shape[0], :copy_shape[1]]
|
|
self.data = resized_array
|
|
self._sync_unset()
|
|
removed_items = []
|
|
for key, row in list(self.key2row.items()):
|
|
if row >= shape[0]:
|
|
self.key2row.pop(key)
|
|
removed_items.append((key, row))
|
|
return removed_items
|
|
|
|
def keys(self):
|
|
"""RETURNS (iterable): A sequence of keys in the table."""
|
|
return self.key2row.keys()
|
|
|
|
def values(self):
|
|
"""Iterate over vectors that have been assigned to at least one key.
|
|
|
|
Note that some vectors may be unassigned, so the number of vectors
|
|
returned may be less than the length of the vectors table.
|
|
|
|
YIELDS (ndarray): A vector in the table.
|
|
|
|
DOCS: https://spacy.io/api/vectors#values
|
|
"""
|
|
for row, vector in enumerate(range(self.data.shape[0])):
|
|
if not self._unset.count(row):
|
|
yield vector
|
|
|
|
def items(self):
|
|
"""Iterate over `(key, vector)` pairs.
|
|
|
|
YIELDS (tuple): A key/vector pair.
|
|
|
|
DOCS: https://spacy.io/api/vectors#items
|
|
"""
|
|
for key, row in self.key2row.items():
|
|
yield key, self.data[row]
|
|
|
|
def find(self, *, key=None, keys=None, row=None, rows=None):
|
|
"""Look up one or more keys by row, or vice versa.
|
|
|
|
key (str / int): Find the row that the given key points to.
|
|
Returns int, -1 if missing.
|
|
keys (iterable): Find rows that the keys point to.
|
|
Returns ndarray.
|
|
row (int): Find the first key that points to the row.
|
|
Returns int.
|
|
rows (iterable): Find the keys that point to the rows.
|
|
Returns ndarray.
|
|
RETURNS: The requested key, keys, row or rows.
|
|
"""
|
|
if sum(arg is None for arg in (key, keys, row, rows)) != 3:
|
|
bad_kwargs = {"key": key, "keys": keys, "row": row, "rows": rows}
|
|
raise ValueError(Errors.E059.format(kwargs=bad_kwargs))
|
|
xp = get_array_module(self.data)
|
|
if key is not None:
|
|
key = get_string_id(key)
|
|
return self.key2row.get(key, -1)
|
|
elif keys is not None:
|
|
keys = [get_string_id(key) for key in keys]
|
|
rows = [self.key2row.get(key, -1.) for key in keys]
|
|
return xp.asarray(rows, dtype="i")
|
|
else:
|
|
row2key = {row: key for key, row in self.key2row.items()}
|
|
if row is not None:
|
|
return row2key[row]
|
|
else:
|
|
results = [row2key[row] for row in rows]
|
|
return xp.asarray(results, dtype="uint64")
|
|
|
|
def add(self, key, *, vector=None, row=None):
|
|
"""Add a key to the table. Keys can be mapped to an existing vector
|
|
by setting `row`, or a new vector can be added.
|
|
|
|
key (int): The key to add.
|
|
vector (ndarray / None): A vector to add for the key.
|
|
row (int / None): The row number of a vector to map the key to.
|
|
RETURNS (int): The row the vector was added to.
|
|
|
|
DOCS: https://spacy.io/api/vectors#add
|
|
"""
|
|
# use int for all keys and rows in key2row for more efficient access
|
|
# and serialization
|
|
key = int(get_string_id(key))
|
|
if row is not None:
|
|
row = int(row)
|
|
if row is None and key in self.key2row:
|
|
row = self.key2row[key]
|
|
elif row is None:
|
|
if self.is_full:
|
|
raise ValueError(Errors.E060.format(rows=self.data.shape[0],
|
|
cols=self.data.shape[1]))
|
|
row = deref(self._unset.begin())
|
|
if row < self.data.shape[0]:
|
|
self.key2row[key] = row
|
|
else:
|
|
raise ValueError(Errors.E197.format(row=row, key=key))
|
|
if vector is not None:
|
|
xp = get_array_module(self.data)
|
|
vector = xp.asarray(vector)
|
|
self.data[row] = vector
|
|
if self._unset.count(row):
|
|
self._unset.erase(self._unset.find(row))
|
|
return row
|
|
|
|
def most_similar(self, queries, *, batch_size=1024, n=1, sort=True):
|
|
"""For each of the given vectors, find the n most similar entries
|
|
to it, by cosine.
|
|
|
|
Queries are by vector. Results are returned as a `(keys, best_rows,
|
|
scores)` tuple. If `queries` is large, the calculations are performed in
|
|
chunks, to avoid consuming too much memory. You can set the `batch_size`
|
|
to control the size/space trade-off during the calculations.
|
|
|
|
queries (ndarray): An array with one or more vectors.
|
|
batch_size (int): The batch size to use.
|
|
n (int): The number of entries to return for each query.
|
|
sort (bool): Whether to sort the n entries returned by score.
|
|
RETURNS (tuple): The most similar entries as a `(keys, best_rows, scores)`
|
|
tuple.
|
|
"""
|
|
xp = get_array_module(self.data)
|
|
filled = sorted(list({row for row in self.key2row.values()}))
|
|
if len(filled) < n:
|
|
raise ValueError(Errors.E198.format(n=n, n_rows=len(filled)))
|
|
filled = xp.asarray(filled)
|
|
|
|
norms = xp.linalg.norm(self.data[filled], axis=1, keepdims=True)
|
|
norms[norms == 0] = 1
|
|
vectors = self.data[filled] / norms
|
|
|
|
best_rows = xp.zeros((queries.shape[0], n), dtype='i')
|
|
scores = xp.zeros((queries.shape[0], n), dtype='f')
|
|
# Work in batches, to avoid memory problems.
|
|
for i in range(0, queries.shape[0], batch_size):
|
|
batch = queries[i : i+batch_size]
|
|
batch_norms = xp.linalg.norm(batch, axis=1, keepdims=True)
|
|
batch_norms[batch_norms == 0] = 1
|
|
batch /= batch_norms
|
|
# batch e.g. (1024, 300)
|
|
# vectors e.g. (10000, 300)
|
|
# sims e.g. (1024, 10000)
|
|
sims = xp.dot(batch, vectors.T)
|
|
best_rows[i:i+batch_size] = xp.argpartition(sims, -n, axis=1)[:,-n:]
|
|
scores[i:i+batch_size] = xp.partition(sims, -n, axis=1)[:,-n:]
|
|
|
|
if sort and n >= 2:
|
|
sorted_index = xp.arange(scores.shape[0])[:,None][i:i+batch_size],xp.argsort(scores[i:i+batch_size], axis=1)[:,::-1]
|
|
scores[i:i+batch_size] = scores[sorted_index]
|
|
best_rows[i:i+batch_size] = best_rows[sorted_index]
|
|
|
|
for i, j in numpy.ndindex(best_rows.shape):
|
|
best_rows[i, j] = filled[best_rows[i, j]]
|
|
# Round values really close to 1 or -1
|
|
scores = xp.around(scores, decimals=4, out=scores)
|
|
# Account for numerical error we want to return in range -1, 1
|
|
scores = xp.clip(scores, a_min=-1, a_max=1, out=scores)
|
|
row2key = {row: key for key, row in self.key2row.items()}
|
|
|
|
numpy_rows = get_current_ops().to_numpy(best_rows)
|
|
keys = xp.asarray(
|
|
[[row2key[row] for row in numpy_rows[i] if row in row2key]
|
|
for i in range(len(queries)) ], dtype="uint64")
|
|
return (keys, best_rows, scores)
|
|
|
|
def to_disk(self, path, **kwargs):
|
|
"""Save the current state to a directory.
|
|
|
|
path (str / Path): A path to a directory, which will be created if
|
|
it doesn't exists.
|
|
|
|
DOCS: https://spacy.io/api/vectors#to_disk
|
|
"""
|
|
xp = get_array_module(self.data)
|
|
if xp is numpy:
|
|
save_array = lambda arr, file_: xp.save(file_, arr, allow_pickle=False)
|
|
else:
|
|
save_array = lambda arr, file_: xp.save(file_, arr)
|
|
|
|
def save_vectors(path):
|
|
# the source of numpy.save indicates that the file object is closed after use.
|
|
# but it seems that somehow this does not happen, as ResourceWarnings are raised here.
|
|
# in order to not rely on this, wrap in context manager.
|
|
with path.open("wb") as _file:
|
|
save_array(self.data, _file)
|
|
|
|
serializers = {
|
|
"vectors": lambda p: save_vectors(p),
|
|
"key2row": lambda p: srsly.write_msgpack(p, self.key2row)
|
|
}
|
|
return util.to_disk(path, serializers, [])
|
|
|
|
def from_disk(self, path, **kwargs):
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
returns it.
|
|
|
|
path (str / Path): Directory path, string or Path-like object.
|
|
RETURNS (Vectors): The modified object.
|
|
|
|
DOCS: https://spacy.io/api/vectors#from_disk
|
|
"""
|
|
def load_key2row(path):
|
|
if path.exists():
|
|
self.key2row = srsly.read_msgpack(path)
|
|
for key, row in self.key2row.items():
|
|
if self._unset.count(row):
|
|
self._unset.erase(self._unset.find(row))
|
|
|
|
def load_keys(path):
|
|
if path.exists():
|
|
keys = numpy.load(str(path))
|
|
for i, key in enumerate(keys):
|
|
self.add(key, row=i)
|
|
|
|
def load_vectors(path):
|
|
ops = get_current_ops()
|
|
if path.exists():
|
|
self.data = ops.xp.load(str(path))
|
|
|
|
serializers = {
|
|
"vectors": load_vectors,
|
|
"keys": load_keys,
|
|
"key2row": load_key2row,
|
|
}
|
|
|
|
util.from_disk(path, serializers, [])
|
|
self._sync_unset()
|
|
return self
|
|
|
|
def to_bytes(self, **kwargs):
|
|
"""Serialize the current state to a binary string.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized form of the `Vectors` object.
|
|
|
|
DOCS: https://spacy.io/api/vectors#to_bytes
|
|
"""
|
|
def serialize_weights():
|
|
if hasattr(self.data, "to_bytes"):
|
|
return self.data.to_bytes()
|
|
else:
|
|
return srsly.msgpack_dumps(self.data)
|
|
|
|
serializers = {
|
|
"key2row": lambda: srsly.msgpack_dumps(self.key2row),
|
|
"vectors": serialize_weights
|
|
}
|
|
return util.to_bytes(serializers, [])
|
|
|
|
def from_bytes(self, data, **kwargs):
|
|
"""Load state from a binary string.
|
|
|
|
data (bytes): The data to load from.
|
|
exclude (list): String names of serialization fields to exclude.
|
|
RETURNS (Vectors): The `Vectors` object.
|
|
|
|
DOCS: https://spacy.io/api/vectors#from_bytes
|
|
"""
|
|
def deserialize_weights(b):
|
|
if hasattr(self.data, "from_bytes"):
|
|
self.data.from_bytes()
|
|
else:
|
|
xp = get_array_module(self.data)
|
|
self.data = xp.asarray(srsly.msgpack_loads(b))
|
|
|
|
deserializers = {
|
|
"key2row": lambda b: self.key2row.update(srsly.msgpack_loads(b)),
|
|
"vectors": deserialize_weights
|
|
}
|
|
util.from_bytes(data, deserializers, [])
|
|
self._sync_unset()
|
|
return self
|
|
|
|
def _sync_unset(self):
|
|
filled = {row for row in self.key2row.values()}
|
|
self._unset = cppset[int]({row for row in range(self.data.shape[0]) if row not in filled})
|